YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Coupled Deformation Modes in the Large Deformation Finite Element Analysis: Generalization

    Source: Journal of Computational and Nonlinear Dynamics:;2009:;volume( 004 ):;issue: 002::page 21002
    Author:
    Oleg N. Dmitrochenko
    ,
    Bassam A. Hussein
    ,
    Ahmed A. Shabana
    DOI: 10.1115/1.3079682
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The effect of the absolute nodal coordinate formulation (ANCF)–coupled deformation modes on the accuracy and efficiency when higher order three-dimensional beam and plate finite elements are used is investigated in this study. It is shown that while computational efficiency can be achieved in some applications by neglecting the effect of some of the ANCF-coupled deformation modes, such modes introduce geometric stiffening/softening effects that can be significant in the case of very flexible structures. As shown in previous publications, for stiff structures, the effect of the ANCF-coupled deformation modes can be neglected. For such stiff structures, the solution does not strongly depend on some of the ANCF-coupled deformation modes, and formulations that include these modes lead to numerical results that are in good agreement with formulations that exclude them. In the case of a very flexible structure, on the other hand, the inclusion of the ANCF-coupled deformation modes becomes necessary in order to obtain an accurate solution. In this case of very flexible structures, the use of the general continuum mechanics approach leads to an efficient solution algorithm and to more accurate numerical results. In order to examine the effect of the elastic force formulation on the efficiency and the coupling between different modes of deformation, three different models are used again to formulate the elastic forces in the absolute nodal coordinate formulation. These three methods are the general continuum mechanics approach, the elastic line (midsurface) approach, and the elastic line (midsurface) approach with the Hellinger–Reissner principle. Three-dimensional absolute nodal coordinate formulation beam and plate elements are used in this study. In the general continuum mechanics approach, the coupling between the cross section deformation and the beam centerline or plate midsurface displacement is considered, while in the approaches based on the elastic line and the Hellinger–Reissner principle, this coupling is neglected. In addition to the fully parametrized beam element used in this study, three different plate elements, two fully parametrized and one reduced order thin plate elements, are used. The numerical results obtained using different finite elements and elastic force formulations are compared in this study.
    • Download: (900.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Coupled Deformation Modes in the Large Deformation Finite Element Analysis: Generalization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/140079
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorOleg N. Dmitrochenko
    contributor authorBassam A. Hussein
    contributor authorAhmed A. Shabana
    date accessioned2017-05-09T00:31:54Z
    date available2017-05-09T00:31:54Z
    date copyrightApril, 2009
    date issued2009
    identifier issn1555-1415
    identifier otherJCNDDM-25676#021002_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140079
    description abstractThe effect of the absolute nodal coordinate formulation (ANCF)–coupled deformation modes on the accuracy and efficiency when higher order three-dimensional beam and plate finite elements are used is investigated in this study. It is shown that while computational efficiency can be achieved in some applications by neglecting the effect of some of the ANCF-coupled deformation modes, such modes introduce geometric stiffening/softening effects that can be significant in the case of very flexible structures. As shown in previous publications, for stiff structures, the effect of the ANCF-coupled deformation modes can be neglected. For such stiff structures, the solution does not strongly depend on some of the ANCF-coupled deformation modes, and formulations that include these modes lead to numerical results that are in good agreement with formulations that exclude them. In the case of a very flexible structure, on the other hand, the inclusion of the ANCF-coupled deformation modes becomes necessary in order to obtain an accurate solution. In this case of very flexible structures, the use of the general continuum mechanics approach leads to an efficient solution algorithm and to more accurate numerical results. In order to examine the effect of the elastic force formulation on the efficiency and the coupling between different modes of deformation, three different models are used again to formulate the elastic forces in the absolute nodal coordinate formulation. These three methods are the general continuum mechanics approach, the elastic line (midsurface) approach, and the elastic line (midsurface) approach with the Hellinger–Reissner principle. Three-dimensional absolute nodal coordinate formulation beam and plate elements are used in this study. In the general continuum mechanics approach, the coupling between the cross section deformation and the beam centerline or plate midsurface displacement is considered, while in the approaches based on the elastic line and the Hellinger–Reissner principle, this coupling is neglected. In addition to the fully parametrized beam element used in this study, three different plate elements, two fully parametrized and one reduced order thin plate elements, are used. The numerical results obtained using different finite elements and elastic force formulations are compared in this study.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCoupled Deformation Modes in the Large Deformation Finite Element Analysis: Generalization
    typeJournal Paper
    journal volume4
    journal issue2
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.3079682
    journal fristpage21002
    identifier eissn1555-1423
    treeJournal of Computational and Nonlinear Dynamics:;2009:;volume( 004 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian