YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Eigenvalue Problem for the Analysis of Variable Topology Mechanical Systems

    Source: Journal of Computational and Nonlinear Dynamics:;2009:;volume( 004 ):;issue: 003::page 31006
    Author:
    József Kövecses
    ,
    Josep M. Font-Llagunes
    DOI: 10.1115/1.3124784
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Mechanical systems with time-varying topology appear frequently in natural or human-made artificial systems. The nature of topology transitions is a key characteristic in the functioning of such systems. In this paper, we discuss a concept that can offer possibilities to gain insight and analyze topology transitions. This approach relies on the use of impulsive constraints and a formulation that makes it possible to decouple the dynamics at topology change. A key point is an eigenvalue problem that characterizes several aspects of energy and momentum transfer at the discontinuous topology transition.
    keyword(s): Eigenvalues , Topology , Motion , Dynamics (Mechanics) , Force , Kinetic energy , Momentum AND Supply chain management ,
    • Download: (493.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Eigenvalue Problem for the Analysis of Variable Topology Mechanical Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/140069
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorJózsef Kövecses
    contributor authorJosep M. Font-Llagunes
    date accessioned2017-05-09T00:31:54Z
    date available2017-05-09T00:31:54Z
    date copyrightJuly, 2009
    date issued2009
    identifier issn1555-1415
    identifier otherJCNDDM-25686#031006_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140069
    description abstractMechanical systems with time-varying topology appear frequently in natural or human-made artificial systems. The nature of topology transitions is a key characteristic in the functioning of such systems. In this paper, we discuss a concept that can offer possibilities to gain insight and analyze topology transitions. This approach relies on the use of impulsive constraints and a formulation that makes it possible to decouple the dynamics at topology change. A key point is an eigenvalue problem that characterizes several aspects of energy and momentum transfer at the discontinuous topology transition.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Eigenvalue Problem for the Analysis of Variable Topology Mechanical Systems
    typeJournal Paper
    journal volume4
    journal issue3
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.3124784
    journal fristpage31006
    identifier eissn1555-1423
    keywordsEigenvalues
    keywordsTopology
    keywordsMotion
    keywordsDynamics (Mechanics)
    keywordsForce
    keywordsKinetic energy
    keywordsMomentum AND Supply chain management
    treeJournal of Computational and Nonlinear Dynamics:;2009:;volume( 004 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian