YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Camera Switching on Fine Accuracy in a Motion Capture System

    Source: Journal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 001::page 14502
    Author:
    Laurel Kuxhaus
    ,
    Patrick J. Schimoler
    ,
    Jeffrey S. Vipperman
    ,
    Mark Carl Miller
    DOI: 10.1115/1.3002910
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: When using optical motion capture systems, increasing the number of cameras improves the visibility. However, the software used to deal with the information fusion from multiple cameras may compromise the accuracy of the system due to camera dropout, which can vary with time. In cadaver studies of radial head motion, increasing the number of cameras used by the motion capture system seemed to decrease the accuracy of the measurements. This study investigates the cause. The hypothesis was that errors in position can be induced when markers are obscured from and then restored to a camera’s viewable range, as can happen in biomechanical studies. Accuracy studies quantified the capabilities of the motion capture system with precision translation and rotation movements. To illustrate the effect that abrupt perceived changes in a marker’s position can have on the calculation of radial head travel, simulated motion experiments were performed. In these studies, random noise was added to simulated data, which obscured the resultant path of motion. Finally, camera-blocking experiments were performed in which precise movements were measured with a six-camera Vicon system and the errors between the actual and perceived motion were computed. During measurement, cameras were selectively blocked and restored to view. The maximum errors in translation and rotation were 3.7 mm and 0.837 deg, respectively. Repeated measures analysis of variance (ANOVAs) (α=0.05) confirmed that the camera-blocking influenced the results. Taken together, these results indicate that camera-switching can affect the observation of fine movements using a motion analysis system with a large number of cameras. One solution is to offer opportunity for user interaction in the software to choose the cameras used for each instant of time.
    keyword(s): Motion , Errors AND Computer software ,
    • Download: (296.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Camera Switching on Fine Accuracy in a Motion Capture System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/140046
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorLaurel Kuxhaus
    contributor authorPatrick J. Schimoler
    contributor authorJeffrey S. Vipperman
    contributor authorMark Carl Miller
    date accessioned2017-05-09T00:31:52Z
    date available2017-05-09T00:31:52Z
    date copyrightJanuary, 2009
    date issued2009
    identifier issn0148-0731
    identifier otherJBENDY-26856#014502_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/140046
    description abstractWhen using optical motion capture systems, increasing the number of cameras improves the visibility. However, the software used to deal with the information fusion from multiple cameras may compromise the accuracy of the system due to camera dropout, which can vary with time. In cadaver studies of radial head motion, increasing the number of cameras used by the motion capture system seemed to decrease the accuracy of the measurements. This study investigates the cause. The hypothesis was that errors in position can be induced when markers are obscured from and then restored to a camera’s viewable range, as can happen in biomechanical studies. Accuracy studies quantified the capabilities of the motion capture system with precision translation and rotation movements. To illustrate the effect that abrupt perceived changes in a marker’s position can have on the calculation of radial head travel, simulated motion experiments were performed. In these studies, random noise was added to simulated data, which obscured the resultant path of motion. Finally, camera-blocking experiments were performed in which precise movements were measured with a six-camera Vicon system and the errors between the actual and perceived motion were computed. During measurement, cameras were selectively blocked and restored to view. The maximum errors in translation and rotation were 3.7 mm and 0.837 deg, respectively. Repeated measures analysis of variance (ANOVAs) (α=0.05) confirmed that the camera-blocking influenced the results. Taken together, these results indicate that camera-switching can affect the observation of fine movements using a motion analysis system with a large number of cameras. One solution is to offer opportunity for user interaction in the software to choose the cameras used for each instant of time.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffects of Camera Switching on Fine Accuracy in a Motion Capture System
    typeJournal Paper
    journal volume131
    journal issue1
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.3002910
    journal fristpage14502
    identifier eissn1528-8951
    keywordsMotion
    keywordsErrors AND Computer software
    treeJournal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian