YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanisms of Residual Stress in Soft Tissues

    Source: Journal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 004::page 44506
    Author:
    Yoram Lanir
    DOI: 10.1115/1.3049863
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Although the importance of knowing the magnitude of residual stress (RS) and its functional significance are widely recognized, there is still disagreement and confusion regarding the nature of physical mechanisms giving rise to RS in tissues and organs. Here an attempt is made to examine the various mechanisms which may be involved in producing RS, and to estimate their roles and significance based on previously published experimental observations. Two concepts are introduced. The first establishes a hierarchy of different possible RS producing mechanisms from the micro (local) level of the tissue space, through the meso-level of the whole tissue, to the macro (organ) one. Whereas micro-level RS seem to be present in all soft tissues, the existence of macro- and meso-level mechanisms are tissue and organ specific. The second concept introduced highlights the significance of tissue swelling as an RS producing mechanism in the local micro-level. The implications of RS mechanism hierarchy are discussed regarding the interpretations of commonly used experimental methods aimed to study RS or to estimate its magnitude. Of the three categories of RS mechanisms, the local micro-RS is the least understood. It is analyzed here in terms of the tissue’s multiconstituent structure, in the framework of mixture theory. It is shown that the micro-RS can stem either from interactions between the solid tissue constituents or between its solids and its fluidlike matrix. The latter mode is associated with osmotic-driven tissue swelling. The feasibility of these two mechanisms is analyzed based on published observations and measured data. The analysis suggests that under conditions not too remote from the in vivo homeostatic one, osmotic-driven tissue swelling is a predominant RS producing mechanism. The analysis also suggests that a true stress-free configuration can be obtained only if all RS producing mechanisms are relieved, and outlines a manner by which this may be achieved.
    • Download: (80.23Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanisms of Residual Stress in Soft Tissues

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139987
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorYoram Lanir
    date accessioned2017-05-09T00:31:47Z
    date available2017-05-09T00:31:47Z
    date copyrightApril, 2009
    date issued2009
    identifier issn0148-0731
    identifier otherJBENDY-26924#044506_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139987
    description abstractAlthough the importance of knowing the magnitude of residual stress (RS) and its functional significance are widely recognized, there is still disagreement and confusion regarding the nature of physical mechanisms giving rise to RS in tissues and organs. Here an attempt is made to examine the various mechanisms which may be involved in producing RS, and to estimate their roles and significance based on previously published experimental observations. Two concepts are introduced. The first establishes a hierarchy of different possible RS producing mechanisms from the micro (local) level of the tissue space, through the meso-level of the whole tissue, to the macro (organ) one. Whereas micro-level RS seem to be present in all soft tissues, the existence of macro- and meso-level mechanisms are tissue and organ specific. The second concept introduced highlights the significance of tissue swelling as an RS producing mechanism in the local micro-level. The implications of RS mechanism hierarchy are discussed regarding the interpretations of commonly used experimental methods aimed to study RS or to estimate its magnitude. Of the three categories of RS mechanisms, the local micro-RS is the least understood. It is analyzed here in terms of the tissue’s multiconstituent structure, in the framework of mixture theory. It is shown that the micro-RS can stem either from interactions between the solid tissue constituents or between its solids and its fluidlike matrix. The latter mode is associated with osmotic-driven tissue swelling. The feasibility of these two mechanisms is analyzed based on published observations and measured data. The analysis suggests that under conditions not too remote from the in vivo homeostatic one, osmotic-driven tissue swelling is a predominant RS producing mechanism. The analysis also suggests that a true stress-free configuration can be obtained only if all RS producing mechanisms are relieved, and outlines a manner by which this may be achieved.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMechanisms of Residual Stress in Soft Tissues
    typeJournal Paper
    journal volume131
    journal issue4
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.3049863
    journal fristpage44506
    identifier eissn1528-8951
    treeJournal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian