YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hemodynamics of the Mitral Valve Under Edge-to-Edge Repair: An In Vitro Steady Flow Study

    Source: Journal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 005::page 51010
    Author:
    Liang Shi
    ,
    Zhaoming He
    DOI: 10.1115/1.3118772
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Edge-to-edge repair (ETER) is a mitral valve repair technique that restores valvular competence by suturing together the free edges of two leaflets. This repair technique alters mitral valve inflow and thus left ventricle hemodynamics during diastole. Our objective was to investigate fluid mechanics immediately downstream of the mitral valve under ETER during diastole. Fresh porcine mitral valves of the annulus size M32 with chordae removed were installed into a steady flow loop simulating a peak diastolic inflow through the mitral valve. Digital particle image velocimetry was used to measure the velocity field immediately downstream of the mitral valve under normal and ETER conditions. First, to study the suture length effect, suture was applied in the central position of the leaflet edge with suture lengths of 3 mm, 6 mm, and 9 mm, respectively. Then, 3 mm suture was set in the central, lateral, and commissural positions of the leaflet edge to study the suture position effect. Flow rate was 15 l/min. Velocity, Reynolds shear stress (RSS), and effective orifice area were assessed. A total of five mitral valves were tested. The normal mitral valve without the ETER had one jet downstream of the valve, but the mitral valve with the central or lateral sutures under the ETER had two jets downstream of the valve with a recirculation region downstream of the suture. The maximum velocity, the maximum RSS in the jets, the pressure drop across the mitral valve, and the jet deflection angle increased with the increase in suture length in the central position. When the suture position effect was investigated with the 3 mm suture, the maximum velocity, the maximum RSS, and the pressure drop across the valve in the central suture position were greater than those of the lateral and the commissural suture positions. The lateral suture demonstrated major and minor jets with the greater maximum velocity and maximum RSS in the major jet. When the suture was in the commissural position, the flow field downstream of the mitral valve was similar to that of the normal mitral valve without the ETER. The effective orifice area was smallest when the suture was applied in the central position as compared with other suture positions. Both suture length and position have an important impact on fluid mechanics downstream of the mitral valve under the ETER in terms of flow pattern, maximum velocity, and RSS distribution. The altered hemodynamics of the mitral valve and thus of the left ventricle by the ETER may change mitral valve and left ventricle function.
    keyword(s): Flow (Dynamics) , Maintenance , Valves , Hemodynamics , Jets , Deflection , Annulus AND Pressure drop ,
    • Download: (537.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hemodynamics of the Mitral Valve Under Edge-to-Edge Repair: An In Vitro Steady Flow Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139955
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorLiang Shi
    contributor authorZhaoming He
    date accessioned2017-05-09T00:31:43Z
    date available2017-05-09T00:31:43Z
    date copyrightMay, 2009
    date issued2009
    identifier issn0148-0731
    identifier otherJBENDY-26947#051010_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139955
    description abstractEdge-to-edge repair (ETER) is a mitral valve repair technique that restores valvular competence by suturing together the free edges of two leaflets. This repair technique alters mitral valve inflow and thus left ventricle hemodynamics during diastole. Our objective was to investigate fluid mechanics immediately downstream of the mitral valve under ETER during diastole. Fresh porcine mitral valves of the annulus size M32 with chordae removed were installed into a steady flow loop simulating a peak diastolic inflow through the mitral valve. Digital particle image velocimetry was used to measure the velocity field immediately downstream of the mitral valve under normal and ETER conditions. First, to study the suture length effect, suture was applied in the central position of the leaflet edge with suture lengths of 3 mm, 6 mm, and 9 mm, respectively. Then, 3 mm suture was set in the central, lateral, and commissural positions of the leaflet edge to study the suture position effect. Flow rate was 15 l/min. Velocity, Reynolds shear stress (RSS), and effective orifice area were assessed. A total of five mitral valves were tested. The normal mitral valve without the ETER had one jet downstream of the valve, but the mitral valve with the central or lateral sutures under the ETER had two jets downstream of the valve with a recirculation region downstream of the suture. The maximum velocity, the maximum RSS in the jets, the pressure drop across the mitral valve, and the jet deflection angle increased with the increase in suture length in the central position. When the suture position effect was investigated with the 3 mm suture, the maximum velocity, the maximum RSS, and the pressure drop across the valve in the central suture position were greater than those of the lateral and the commissural suture positions. The lateral suture demonstrated major and minor jets with the greater maximum velocity and maximum RSS in the major jet. When the suture was in the commissural position, the flow field downstream of the mitral valve was similar to that of the normal mitral valve without the ETER. The effective orifice area was smallest when the suture was applied in the central position as compared with other suture positions. Both suture length and position have an important impact on fluid mechanics downstream of the mitral valve under the ETER in terms of flow pattern, maximum velocity, and RSS distribution. The altered hemodynamics of the mitral valve and thus of the left ventricle by the ETER may change mitral valve and left ventricle function.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHemodynamics of the Mitral Valve Under Edge-to-Edge Repair: An In Vitro Steady Flow Study
    typeJournal Paper
    journal volume131
    journal issue5
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.3118772
    journal fristpage51010
    identifier eissn1528-8951
    keywordsFlow (Dynamics)
    keywordsMaintenance
    keywordsValves
    keywordsHemodynamics
    keywordsJets
    keywordsDeflection
    keywordsAnnulus AND Pressure drop
    treeJournal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian