YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design Optimization of a Total Hip Prosthesis for Wear Reduction

    Source: Journal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 005::page 51003
    Author:
    George Matsoukas
    ,
    Il Yong Kim
    DOI: 10.1115/1.3049862
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Aseptic loosening from polyethylene debris is the leading cause of failure for metal-on-polyethylene hip implants. The accumulation of wear debris can lead to osteolysis, the degradation of bone surrounding the implant components. In the present study, a parametric three-dimensional finite element model of an uncemented total hip replacement prosthesis was constructed and implanted into a femur model constructed from computed tomography (CT) scan data. Design optimization was performed considering volumetric wear as an objective function using a computational model validated in a previous study through in vitro wear assessment. Constraints were used to maintain the physiological range of motion of wear-optimum designs. Loading conditions for both walking and stair climbing were considered in the analysis. In addition, modification of the acetabular liner surface nodes was performed in discrete intervals to reflect the actual wear and creep damage occurring on the liner surface. Stair climbing was found to produce 49% higher volumetric wear than walking. Using a sensitivity analysis, it was found that the objective function sensitivity to the chosen design variables was identical for both walking and stair climbing. The greatest reduction in volumetric wear achieved while maintaining a physiological range of motion was 16%. It was found that including nodal modification in the sensitivity analysis produced little or no difference in the sensitivity analysis results due to the linear nature of volumetric wear progression. Thus, nodal modification was not used in optimization. An increase in the maximum contact pressure was observed for all wear-optimized designs, and an increase in head-liner penetration was found to be related to a reduction in volumetric wear.
    • Download: (1.440Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design Optimization of a Total Hip Prosthesis for Wear Reduction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139948
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorGeorge Matsoukas
    contributor authorIl Yong Kim
    date accessioned2017-05-09T00:31:42Z
    date available2017-05-09T00:31:42Z
    date copyrightMay, 2009
    date issued2009
    identifier issn0148-0731
    identifier otherJBENDY-26947#051003_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139948
    description abstractAseptic loosening from polyethylene debris is the leading cause of failure for metal-on-polyethylene hip implants. The accumulation of wear debris can lead to osteolysis, the degradation of bone surrounding the implant components. In the present study, a parametric three-dimensional finite element model of an uncemented total hip replacement prosthesis was constructed and implanted into a femur model constructed from computed tomography (CT) scan data. Design optimization was performed considering volumetric wear as an objective function using a computational model validated in a previous study through in vitro wear assessment. Constraints were used to maintain the physiological range of motion of wear-optimum designs. Loading conditions for both walking and stair climbing were considered in the analysis. In addition, modification of the acetabular liner surface nodes was performed in discrete intervals to reflect the actual wear and creep damage occurring on the liner surface. Stair climbing was found to produce 49% higher volumetric wear than walking. Using a sensitivity analysis, it was found that the objective function sensitivity to the chosen design variables was identical for both walking and stair climbing. The greatest reduction in volumetric wear achieved while maintaining a physiological range of motion was 16%. It was found that including nodal modification in the sensitivity analysis produced little or no difference in the sensitivity analysis results due to the linear nature of volumetric wear progression. Thus, nodal modification was not used in optimization. An increase in the maximum contact pressure was observed for all wear-optimized designs, and an increase in head-liner penetration was found to be related to a reduction in volumetric wear.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign Optimization of a Total Hip Prosthesis for Wear Reduction
    typeJournal Paper
    journal volume131
    journal issue5
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.3049862
    journal fristpage51003
    identifier eissn1528-8951
    treeJournal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian