YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of Near-Wall Hemodynamic Parameters in Stented Artery Models

    Source: Journal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 006::page 61006
    Author:
    Nandini Duraiswamy
    ,
    Richard T. Schoephoerster
    ,
    James E. Moore
    DOI: 10.1115/1.3118764
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Four commercially available stent designs (two balloon expandable—Bx Velocity and NIR, and two self-expanding—Wallstent and Aurora) were modeled to compare the near-wall flow characteristics of stented arteries using computational fluid dynamics simulations under pulsatile flow conditions. A flat rectangular stented vessel model was constructed and simulations were carried out using rigid walls and sinusoidal velocity input (nominal wall shear stress of 10±5 dyn/cm2). Mesh independence was determined from convergence (<10%) of the axial wall shear stress (WSS) along the length of the stented model. The flow disturbance was characterized and quantified by the distributions of axial and transverse WSS, WSS gradients, and flow separation parameters. Normalized time-averaged effective WSS during the flow cycle was the smallest for the Wallstent (2.9 dyn/cm2) compared with the others (5.8 dyn/cm2 for the Bx Velocity stent, 5.0 dyn/cm2 for the Aurora stent, and 5.3 dyn/cm2 for the NIR stent). Regions of low mean WSS (<5 dyn/cm2) and elevated WSS gradients (>20 dyn/cm3) were also the largest for the Wallstent compared with the others. WSS gradients were the largest near the struts and remained distinctly nonzero for most of the region between the struts for all stent designs. Fully recirculating regions (as determined by separation parameter) were the largest for the Bx Velocity stent compared with the others. The most hemodynamically favorable stents from our computational analysis were the Bx Velocity and NIR stents, which were slotted-tube balloon-expandable designs. Since clinical data indicate lower restenosis rates for the Bx Velocity and NIR stents compared with the Wallstent, our data suggest that near-wall hemodynamics may predict some aspects of in vivo performance. Further consideration of biomechanics, including solid mechanics, in stent design is warranted.
    keyword(s): Flow (Dynamics) , Hemodynamics , stents , Cycles , Struts (Engineering) , Stress AND Shear (Mechanics) ,
    • Download: (1.224Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of Near-Wall Hemodynamic Parameters in Stented Artery Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139929
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorNandini Duraiswamy
    contributor authorRichard T. Schoephoerster
    contributor authorJames E. Moore
    date accessioned2017-05-09T00:31:40Z
    date available2017-05-09T00:31:40Z
    date copyrightJune, 2009
    date issued2009
    identifier issn0148-0731
    identifier otherJBENDY-26966#061006_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139929
    description abstractFour commercially available stent designs (two balloon expandable—Bx Velocity and NIR, and two self-expanding—Wallstent and Aurora) were modeled to compare the near-wall flow characteristics of stented arteries using computational fluid dynamics simulations under pulsatile flow conditions. A flat rectangular stented vessel model was constructed and simulations were carried out using rigid walls and sinusoidal velocity input (nominal wall shear stress of 10±5 dyn/cm2). Mesh independence was determined from convergence (<10%) of the axial wall shear stress (WSS) along the length of the stented model. The flow disturbance was characterized and quantified by the distributions of axial and transverse WSS, WSS gradients, and flow separation parameters. Normalized time-averaged effective WSS during the flow cycle was the smallest for the Wallstent (2.9 dyn/cm2) compared with the others (5.8 dyn/cm2 for the Bx Velocity stent, 5.0 dyn/cm2 for the Aurora stent, and 5.3 dyn/cm2 for the NIR stent). Regions of low mean WSS (<5 dyn/cm2) and elevated WSS gradients (>20 dyn/cm3) were also the largest for the Wallstent compared with the others. WSS gradients were the largest near the struts and remained distinctly nonzero for most of the region between the struts for all stent designs. Fully recirculating regions (as determined by separation parameter) were the largest for the Bx Velocity stent compared with the others. The most hemodynamically favorable stents from our computational analysis were the Bx Velocity and NIR stents, which were slotted-tube balloon-expandable designs. Since clinical data indicate lower restenosis rates for the Bx Velocity and NIR stents compared with the Wallstent, our data suggest that near-wall hemodynamics may predict some aspects of in vivo performance. Further consideration of biomechanics, including solid mechanics, in stent design is warranted.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComparison of Near-Wall Hemodynamic Parameters in Stented Artery Models
    typeJournal Paper
    journal volume131
    journal issue6
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.3118764
    journal fristpage61006
    identifier eissn1528-8951
    keywordsFlow (Dynamics)
    keywordsHemodynamics
    keywordsstents
    keywordsCycles
    keywordsStruts (Engineering)
    keywordsStress AND Shear (Mechanics)
    treeJournal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian