YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulating Acceleration From Stereophotogrammetry For Medical Device Design

    Source: Journal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 006::page 61002
    Author:
    Philip A. Tresadern
    ,
    Julie Rigby
    ,
    John Y. Goulermas
    ,
    Sibylle B. Thies
    ,
    Laurence P. J. Kenney
    ,
    David Howard
    ,
    Christine Smith
    DOI: 10.1115/1.3118771
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: When designing a medical device based on lightweight accelerometers, the designer is faced with a number of questions in order to maximize performance while minimizing cost and complexity: Where should the inertial unit be located? How many units are required? How is performance affected if the unit is not correctly located during donning? One way to answer these questions is to use position data from a single trial, captured with a nonportable measurement system (e.g., stereophotogrammetry) to simulate measurements from multiple accelerometers at different locations on the body. In this paper, we undertake a thorough investigation into the applicability of these simulated acceleration signals via a series of interdependent experiments of increasing generality. We measured the dynamics of a reference coordinate frame using stereophotogrammetry over a number of trials. These dynamics were then used to simulate several “virtual” accelerometers at different points on the body segment. We then compared the simulated signals with those directly measured to evaluate the error under a number of conditions. Finally, we demonstrated an example of how simulated signals can be employed in a system design application. In the best case, we may expect an error of 0.028 m/s2 between a derived virtual signal and that directly measured by an accelerometer. In practice, however, using centripetal and tangential acceleration terms (that are poorly estimated) results in an error that is an order of magnitude greater than the baseline. Furthermore, nonrigidity of the limb can increase error dramatically, although the effects can be reduced considerably via careful modeling. We conclude that using simulated signals has definite benefits when an appropriate model of the body segment is applied.
    • Download: (295.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulating Acceleration From Stereophotogrammetry For Medical Device Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139925
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorPhilip A. Tresadern
    contributor authorJulie Rigby
    contributor authorJohn Y. Goulermas
    contributor authorSibylle B. Thies
    contributor authorLaurence P. J. Kenney
    contributor authorDavid Howard
    contributor authorChristine Smith
    date accessioned2017-05-09T00:31:40Z
    date available2017-05-09T00:31:40Z
    date copyrightJune, 2009
    date issued2009
    identifier issn0148-0731
    identifier otherJBENDY-26966#061002_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139925
    description abstractWhen designing a medical device based on lightweight accelerometers, the designer is faced with a number of questions in order to maximize performance while minimizing cost and complexity: Where should the inertial unit be located? How many units are required? How is performance affected if the unit is not correctly located during donning? One way to answer these questions is to use position data from a single trial, captured with a nonportable measurement system (e.g., stereophotogrammetry) to simulate measurements from multiple accelerometers at different locations on the body. In this paper, we undertake a thorough investigation into the applicability of these simulated acceleration signals via a series of interdependent experiments of increasing generality. We measured the dynamics of a reference coordinate frame using stereophotogrammetry over a number of trials. These dynamics were then used to simulate several “virtual” accelerometers at different points on the body segment. We then compared the simulated signals with those directly measured to evaluate the error under a number of conditions. Finally, we demonstrated an example of how simulated signals can be employed in a system design application. In the best case, we may expect an error of 0.028 m/s2 between a derived virtual signal and that directly measured by an accelerometer. In practice, however, using centripetal and tangential acceleration terms (that are poorly estimated) results in an error that is an order of magnitude greater than the baseline. Furthermore, nonrigidity of the limb can increase error dramatically, although the effects can be reduced considerably via careful modeling. We conclude that using simulated signals has definite benefits when an appropriate model of the body segment is applied.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSimulating Acceleration From Stereophotogrammetry For Medical Device Design
    typeJournal Paper
    journal volume131
    journal issue6
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.3118771
    journal fristpage61002
    identifier eissn1528-8951
    treeJournal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian