YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Controlled Vacuum Seeding as a Means of Generating Uniform Cellular Distribution in Electrospun Polycaprolactone (PCL) Scaffolds

    Source: Journal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 007::page 74521
    Author:
    Ming Chen
    ,
    Heather Michaud
    ,
    Sankha Bhowmick
    DOI: 10.1115/1.3173283
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A major challenge encountered in using electrospun scaffolds for tissue engineering is the non-uniform cellular distribution in the scaffold with increasing depth under normal passive seeding conditions. Because of the small surface pores, typically few microns in diameter, cells tend to congregate and proliferate on the surface much faster compared to penetrating the scaffold interior. In order to overcome this problem, we used a vacuum seeding technique on polycaprolactone electrospun scaffolds while using NIH 3T3 fibroblasts as the model cell system. This serves as a precursor to the bilayer skin model where the fibroblasts would be residing at an intermediate layer and the keratinocytes would be on the top. Vacuum seeding was used in this study to enhance fibroblasts seeding and proliferation at different depths. Our results show that the kinetics of cell attachment and proliferation were a function of varying vacuum pressure as well as fiber diameter. Cell attachment reached a maxima somewhere between 2–8 in. Hg vacuum pressure and fell for lower vacuum pressures presumably because of cell loss through the filtration process. Cell proliferation and collagen secretion over five days indicated that vacuum pressure did not affect cellular function adversely. We also compared the combined impact of scaffold architecture (400 nm versus 1100 nm average diameter fiber scaffolds) and vacuum pressure. At a given pressure, more cells were retained in the 400 nm scaffolds compared to 1100 nm scaffolds. In addition, the cell intensity profile shows cell intensity peak shift from the top to the inner layers of the scaffold by lowering the vacuum pressure from 0 in. Hg to 20 in. Hg. For a given vacuum pressure the cells were seeded deeper within the 1100 nm scaffold. The results indicate that cells can be seeded in electrospun scaffolds at various depths in a controlled manner using a simple vacuum seeding technique. The depth of seeding is a function of pressure and scaffold fiber diameter.
    keyword(s): Vacuum AND Pressure ,
    • Download: (1.548Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Controlled Vacuum Seeding as a Means of Generating Uniform Cellular Distribution in Electrospun Polycaprolactone (PCL) Scaffolds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139917
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorMing Chen
    contributor authorHeather Michaud
    contributor authorSankha Bhowmick
    date accessioned2017-05-09T00:31:39Z
    date available2017-05-09T00:31:39Z
    date copyrightJuly, 2009
    date issued2009
    identifier issn0148-0731
    identifier otherJBENDY-26987#074521_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139917
    description abstractA major challenge encountered in using electrospun scaffolds for tissue engineering is the non-uniform cellular distribution in the scaffold with increasing depth under normal passive seeding conditions. Because of the small surface pores, typically few microns in diameter, cells tend to congregate and proliferate on the surface much faster compared to penetrating the scaffold interior. In order to overcome this problem, we used a vacuum seeding technique on polycaprolactone electrospun scaffolds while using NIH 3T3 fibroblasts as the model cell system. This serves as a precursor to the bilayer skin model where the fibroblasts would be residing at an intermediate layer and the keratinocytes would be on the top. Vacuum seeding was used in this study to enhance fibroblasts seeding and proliferation at different depths. Our results show that the kinetics of cell attachment and proliferation were a function of varying vacuum pressure as well as fiber diameter. Cell attachment reached a maxima somewhere between 2–8 in. Hg vacuum pressure and fell for lower vacuum pressures presumably because of cell loss through the filtration process. Cell proliferation and collagen secretion over five days indicated that vacuum pressure did not affect cellular function adversely. We also compared the combined impact of scaffold architecture (400 nm versus 1100 nm average diameter fiber scaffolds) and vacuum pressure. At a given pressure, more cells were retained in the 400 nm scaffolds compared to 1100 nm scaffolds. In addition, the cell intensity profile shows cell intensity peak shift from the top to the inner layers of the scaffold by lowering the vacuum pressure from 0 in. Hg to 20 in. Hg. For a given vacuum pressure the cells were seeded deeper within the 1100 nm scaffold. The results indicate that cells can be seeded in electrospun scaffolds at various depths in a controlled manner using a simple vacuum seeding technique. The depth of seeding is a function of pressure and scaffold fiber diameter.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleControlled Vacuum Seeding as a Means of Generating Uniform Cellular Distribution in Electrospun Polycaprolactone (PCL) Scaffolds
    typeJournal Paper
    journal volume131
    journal issue7
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.3173283
    journal fristpage74521
    identifier eissn1528-8951
    keywordsVacuum AND Pressure
    treeJournal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian