YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Elaborate Data Set Characterizing the Mechanical Response of the Foot

    Source: Journal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 009::page 94502
    Author:
    Ahmet Erdemir
    ,
    Pavana A. Sirimamilla
    ,
    Jason P. Halloran
    ,
    Antonie J. van den Bogert
    DOI: 10.1115/1.3148474
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Mechanical properties of the foot are responsible for its normal function and play a role in various clinical problems. Specifically, we are interested in quantification of foot mechanical properties to assist the development of computational models for movement analysis and detailed simulations of tissue deformation. Current available data are specific to a foot region and the loading scenarios are limited to a single direction. A data set that incorporates regional response, to quantify individual function of foot components, as well as the overall response, to illustrate their combined operation, does not exist. Furthermore, the combined three-dimensional loading scenarios while measuring the complete three-dimensional deformation response are lacking. When combined with an anatomical image data set, development of anatomically realistic and mechanically validated models becomes possible. Therefore, the goal of this study was to record and disseminate the mechanical response of a foot specimen, supported by imaging data. Robotic testing was conducted at the rear foot, forefoot, metatarsal heads, and the foot as a whole. Complex foot deformations were induced by single mode loading, e.g., compression, and combined loading, e.g., compression and shear. Small and large indenters were used for heel and metatarsal head loading, an elevated platform was utilized to isolate the rear foot and forefoot, and a full platform compressed the whole foot. Three-dimensional tool movements and reaction loads were recorded simultaneously. Computed tomography scans of the same specimen were collected for anatomical reconstruction a priori. The three-dimensional mechanical response of the specimen was nonlinear and viscoelastic. A low stiffness region was observed starting with contact between the tool and foot regions, increasing with loading. Loading and unloading responses portrayed hysteresis. Loading range ensured capturing the toe and linear regions of the load deformation curves for the dominant loading direction, with the rates approximating those of walking. A large data set was successfully obtained to characterize the overall and the regional mechanical responses of an intact foot specimen under single and combined loads. Medical imaging complemented the mechanical testing data to establish the potential relationship between the anatomical architecture and mechanical responses and to further develop foot models that are mechanically realistic and anatomically consistent. This combined data set has been documented and disseminated in the public domain to promote future development in foot biomechanics.
    • Download: (486.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Elaborate Data Set Characterizing the Mechanical Response of the Foot

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139864
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorAhmet Erdemir
    contributor authorPavana A. Sirimamilla
    contributor authorJason P. Halloran
    contributor authorAntonie J. van den Bogert
    date accessioned2017-05-09T00:31:32Z
    date available2017-05-09T00:31:32Z
    date copyrightSeptember, 2009
    date issued2009
    identifier issn0148-0731
    identifier otherJBENDY-27031#094502_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139864
    description abstractMechanical properties of the foot are responsible for its normal function and play a role in various clinical problems. Specifically, we are interested in quantification of foot mechanical properties to assist the development of computational models for movement analysis and detailed simulations of tissue deformation. Current available data are specific to a foot region and the loading scenarios are limited to a single direction. A data set that incorporates regional response, to quantify individual function of foot components, as well as the overall response, to illustrate their combined operation, does not exist. Furthermore, the combined three-dimensional loading scenarios while measuring the complete three-dimensional deformation response are lacking. When combined with an anatomical image data set, development of anatomically realistic and mechanically validated models becomes possible. Therefore, the goal of this study was to record and disseminate the mechanical response of a foot specimen, supported by imaging data. Robotic testing was conducted at the rear foot, forefoot, metatarsal heads, and the foot as a whole. Complex foot deformations were induced by single mode loading, e.g., compression, and combined loading, e.g., compression and shear. Small and large indenters were used for heel and metatarsal head loading, an elevated platform was utilized to isolate the rear foot and forefoot, and a full platform compressed the whole foot. Three-dimensional tool movements and reaction loads were recorded simultaneously. Computed tomography scans of the same specimen were collected for anatomical reconstruction a priori. The three-dimensional mechanical response of the specimen was nonlinear and viscoelastic. A low stiffness region was observed starting with contact between the tool and foot regions, increasing with loading. Loading and unloading responses portrayed hysteresis. Loading range ensured capturing the toe and linear regions of the load deformation curves for the dominant loading direction, with the rates approximating those of walking. A large data set was successfully obtained to characterize the overall and the regional mechanical responses of an intact foot specimen under single and combined loads. Medical imaging complemented the mechanical testing data to establish the potential relationship between the anatomical architecture and mechanical responses and to further develop foot models that are mechanically realistic and anatomically consistent. This combined data set has been documented and disseminated in the public domain to promote future development in foot biomechanics.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Elaborate Data Set Characterizing the Mechanical Response of the Foot
    typeJournal Paper
    journal volume131
    journal issue9
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.3148474
    journal fristpage94502
    identifier eissn1528-8951
    treeJournal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian