YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Phenomenological Approach Toward Patient-Specific Computational Modeling of Articular Cartilage Including Collagen Fiber Tracking

    Source: Journal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 009::page 91006
    Author:
    David M. Pierce
    ,
    Werner Trobin
    ,
    Siegfried Trattnig
    ,
    Horst Bischof
    ,
    Gerhard A. Holzapfel
    DOI: 10.1115/1.3148471
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: To model the cartilage morphology and the material response, a phenomenological and patient-specific simulation approach incorporating the collagen fiber fabric is proposed. Cartilage tissue response is nearly isochoric and time-dependent under physiological pressure levels. Hence, a viscoelastic constitutive model capable of reproducing finite strains is employed, while the time-dependent deformation change is purely isochoric. The model incorporates seven material parameters, which all have a physical interpretation. To calibrate the model and facilitate further analysis, five human cartilage specimens underwent a number of tests. A series of magnetic resonance imaging (MRI) sequences is taken, next the cartilage surface is imaged, then mechanical indentation tests are completed at 2–7 different locations per sample, resulting in force/displacement data over time, and finally, the underlying bone surface is imaged. Imaging and mechanical testing are performed with a custom-built robotics-based testing device. Stereo reconstruction of the cartilage and subchondral bone surface is employed, which, together with the proposed constitutive model, led to specimen-specific finite element simulations of the mechanical indentation tests. The force-time response of 23 such indentation experiment simulations is optimized to estimate the mean material parameters and corresponding standard deviations. The model is capable of reproducing the deformation behavior of human articular cartilage in the physiological loading domain, as demonstrated by the good agreement between the experiment and numerical results (R2=0.95±0.03, mean±standard deviation of force-time response for 23 indentation tests). To address validation, a sevenfold cross-validation experiment is performed on the 21 experiments representing healthy cartilage. To quantify the predictive error, the mean of the absolute force differences and Pearson’s correlation coefficient are both calculated. Deviations in the mean absolute difference, normalized by the peak force, range from 4% to 90%, with 40±25%(M±SD). The correlation coefficients across all predictions have a minimum of 0.939, and a maximum of 0.993 with 0.975±0.013(M±SD), which demonstrates an excellent match of the decay characteristics. A novel feature of the proposed method is 3D sample-specific numerical tracking of the fiber fabric deformation under general loading. This feature is demonstrated by comparing the estimated fiber fabric deformation with recently published experimental data determined by diffusion tensor MRI. The proposed approach is efficient enough to enable large-scale 3D contact simulations of knee joint loading in simulations with accurate joint geometries.
    • Download: (935.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Phenomenological Approach Toward Patient-Specific Computational Modeling of Articular Cartilage Including Collagen Fiber Tracking

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139860
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorDavid M. Pierce
    contributor authorWerner Trobin
    contributor authorSiegfried Trattnig
    contributor authorHorst Bischof
    contributor authorGerhard A. Holzapfel
    date accessioned2017-05-09T00:31:32Z
    date available2017-05-09T00:31:32Z
    date copyrightSeptember, 2009
    date issued2009
    identifier issn0148-0731
    identifier otherJBENDY-27031#091006_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139860
    description abstractTo model the cartilage morphology and the material response, a phenomenological and patient-specific simulation approach incorporating the collagen fiber fabric is proposed. Cartilage tissue response is nearly isochoric and time-dependent under physiological pressure levels. Hence, a viscoelastic constitutive model capable of reproducing finite strains is employed, while the time-dependent deformation change is purely isochoric. The model incorporates seven material parameters, which all have a physical interpretation. To calibrate the model and facilitate further analysis, five human cartilage specimens underwent a number of tests. A series of magnetic resonance imaging (MRI) sequences is taken, next the cartilage surface is imaged, then mechanical indentation tests are completed at 2–7 different locations per sample, resulting in force/displacement data over time, and finally, the underlying bone surface is imaged. Imaging and mechanical testing are performed with a custom-built robotics-based testing device. Stereo reconstruction of the cartilage and subchondral bone surface is employed, which, together with the proposed constitutive model, led to specimen-specific finite element simulations of the mechanical indentation tests. The force-time response of 23 such indentation experiment simulations is optimized to estimate the mean material parameters and corresponding standard deviations. The model is capable of reproducing the deformation behavior of human articular cartilage in the physiological loading domain, as demonstrated by the good agreement between the experiment and numerical results (R2=0.95±0.03, mean±standard deviation of force-time response for 23 indentation tests). To address validation, a sevenfold cross-validation experiment is performed on the 21 experiments representing healthy cartilage. To quantify the predictive error, the mean of the absolute force differences and Pearson’s correlation coefficient are both calculated. Deviations in the mean absolute difference, normalized by the peak force, range from 4% to 90%, with 40±25%(M±SD). The correlation coefficients across all predictions have a minimum of 0.939, and a maximum of 0.993 with 0.975±0.013(M±SD), which demonstrates an excellent match of the decay characteristics. A novel feature of the proposed method is 3D sample-specific numerical tracking of the fiber fabric deformation under general loading. This feature is demonstrated by comparing the estimated fiber fabric deformation with recently published experimental data determined by diffusion tensor MRI. The proposed approach is efficient enough to enable large-scale 3D contact simulations of knee joint loading in simulations with accurate joint geometries.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Phenomenological Approach Toward Patient-Specific Computational Modeling of Articular Cartilage Including Collagen Fiber Tracking
    typeJournal Paper
    journal volume131
    journal issue9
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.3148471
    journal fristpage91006
    identifier eissn1528-8951
    treeJournal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian