YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Medial Collagen Organization and Axial In Situ Stretch on Saccular Cerebral Aneurysm Growth

    Source: Journal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 010::page 101010
    Author:
    Thomas Eriksson
    ,
    Martin Kroon
    ,
    Gerhard A. Holzapfel
    DOI: 10.1115/1.3200911
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A model for saccular cerebral aneurysm growth, proposed by and (2007, “A Model for Saccular Cerebral Aneurysm Growth in a Human Middle Cerebral Artery,” J. Theor. Biol., 247, pp. 775–787; 2008, “Modeling of Saccular Aneurysm Growth in a Human Middle Cerebral Artery,” ASME J. Biomech. Eng., 130, p. 051012), is further investigated. A human middle cerebral artery is modeled as a two-layer cylinder where the layers correspond to the media and the adventitia. The immediate loss of media in the location of the aneurysm is taken to be responsible for the initiation of the aneurysm growth. The aneurysm is regarded as a development of the adventitia, which is composed of several distinct layers of collagen fibers perfectly aligned in specified directions. The collagen fibers are the only load-bearing constituent in the aneurysm wall; their production and degradation depend on the stretch of the wall and are responsible for the aneurysm growth. The anisotropy of the surrounding media was modeled using the strain-energy function proposed by (2000, “A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models,” J. Elast., 61, pp. 1–48), which is valid for an elastic material with two families of fibers. It was shown that the inclusion of fibers in the media reduced the maximum principal Cauchy stress and the maximum shear stress in the aneurysm wall. The thickness increase in the aneurysm wall due to material growth was also decreased. Varying the fiber angle in the media from a circumferential direction to a deviation of 10 deg from the circumferential direction did, however, only show a little effect. Altering the axial in situ stretch of the artery had a much larger effect in terms of the steady-state shape of the aneurysm and the resulting stresses in the aneurysm wall. The peak values of the maximum principal stress and the thickness increase both became significantly higher for larger axial stretches.
    keyword(s): Fibers , Stress AND Aneurysms ,
    • Download: (357.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Medial Collagen Organization and Axial In Situ Stretch on Saccular Cerebral Aneurysm Growth

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139842
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorThomas Eriksson
    contributor authorMartin Kroon
    contributor authorGerhard A. Holzapfel
    date accessioned2017-05-09T00:31:30Z
    date available2017-05-09T00:31:30Z
    date copyrightOctober, 2009
    date issued2009
    identifier issn0148-0731
    identifier otherJBENDY-27048#101010_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139842
    description abstractA model for saccular cerebral aneurysm growth, proposed by and (2007, “A Model for Saccular Cerebral Aneurysm Growth in a Human Middle Cerebral Artery,” J. Theor. Biol., 247, pp. 775–787; 2008, “Modeling of Saccular Aneurysm Growth in a Human Middle Cerebral Artery,” ASME J. Biomech. Eng., 130, p. 051012), is further investigated. A human middle cerebral artery is modeled as a two-layer cylinder where the layers correspond to the media and the adventitia. The immediate loss of media in the location of the aneurysm is taken to be responsible for the initiation of the aneurysm growth. The aneurysm is regarded as a development of the adventitia, which is composed of several distinct layers of collagen fibers perfectly aligned in specified directions. The collagen fibers are the only load-bearing constituent in the aneurysm wall; their production and degradation depend on the stretch of the wall and are responsible for the aneurysm growth. The anisotropy of the surrounding media was modeled using the strain-energy function proposed by (2000, “A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models,” J. Elast., 61, pp. 1–48), which is valid for an elastic material with two families of fibers. It was shown that the inclusion of fibers in the media reduced the maximum principal Cauchy stress and the maximum shear stress in the aneurysm wall. The thickness increase in the aneurysm wall due to material growth was also decreased. Varying the fiber angle in the media from a circumferential direction to a deviation of 10 deg from the circumferential direction did, however, only show a little effect. Altering the axial in situ stretch of the artery had a much larger effect in terms of the steady-state shape of the aneurysm and the resulting stresses in the aneurysm wall. The peak values of the maximum principal stress and the thickness increase both became significantly higher for larger axial stretches.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInfluence of Medial Collagen Organization and Axial In Situ Stretch on Saccular Cerebral Aneurysm Growth
    typeJournal Paper
    journal volume131
    journal issue10
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.3200911
    journal fristpage101010
    identifier eissn1528-8951
    keywordsFibers
    keywordsStress AND Aneurysms
    treeJournal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian