YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Flash Freezing on Variability in Spinal Cord Compression Behavior

    Source: Journal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 011::page 111010
    Author:
    Carolyn J. Sparrey
    ,
    Tony M. Keaveny
    DOI: 10.1115/1.4000079
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The compression behavior of spinal cord tissue is important for understanding spinal cord injury mechanics but has not yet been established. Characterizing compression behavior assumes precise specimen geometry; however, preparing test specimens of spinal cord tissue is complicated by the extreme compliance of the tissue. The objectives of this study were to determine the effect of flash freezing on both specimen preparation and mechanical response and to quantify the effect of small deviations in specimen geometry on mechanical behavior. Specimens of porcine spinal cord white matter were harvested immediately following sacrifice. The tissue was divided into two groups: partially frozen specimens were flash frozen (60 s at −80°C) prior to cutting, while fresh specimens were kept at room temperature. Specimens were tested in unconfined compression at strain rates of 0.05 s−1 and 5.0 s−1 to 40% strain. Parametric finite element analyses were used to investigate the effect of specimen face angle, cross section, and interface friction on the mechanical response. Flash freezing did not affect the mean mechanical behavior of the tissue but did reduce the variability in the response across specimens (p<0.05). Freezing also reduced variability in the specimen geometry. Variations in specimen face angle (0–10 deg) resulted in a 34% coefficient of variation and a 60% underestimation of peak stress. The effect of geometry on variation and error was greater than that of interface friction. Taken together, these findings demonstrate the advantages of flash freezing in biomechanical studies of spine cord tissue.
    keyword(s): Friction , Freezing , Biological tissues , Compression , Cutting , Geometry , Spinal cord , Finite element analysis , Mechanical behavior , Stress AND Errors ,
    • Download: (286.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Flash Freezing on Variability in Spinal Cord Compression Behavior

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139825
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorCarolyn J. Sparrey
    contributor authorTony M. Keaveny
    date accessioned2017-05-09T00:31:28Z
    date available2017-05-09T00:31:28Z
    date copyrightNovember, 2009
    date issued2009
    identifier issn0148-0731
    identifier otherJBENDY-27068#111010_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139825
    description abstractThe compression behavior of spinal cord tissue is important for understanding spinal cord injury mechanics but has not yet been established. Characterizing compression behavior assumes precise specimen geometry; however, preparing test specimens of spinal cord tissue is complicated by the extreme compliance of the tissue. The objectives of this study were to determine the effect of flash freezing on both specimen preparation and mechanical response and to quantify the effect of small deviations in specimen geometry on mechanical behavior. Specimens of porcine spinal cord white matter were harvested immediately following sacrifice. The tissue was divided into two groups: partially frozen specimens were flash frozen (60 s at −80°C) prior to cutting, while fresh specimens were kept at room temperature. Specimens were tested in unconfined compression at strain rates of 0.05 s−1 and 5.0 s−1 to 40% strain. Parametric finite element analyses were used to investigate the effect of specimen face angle, cross section, and interface friction on the mechanical response. Flash freezing did not affect the mean mechanical behavior of the tissue but did reduce the variability in the response across specimens (p<0.05). Freezing also reduced variability in the specimen geometry. Variations in specimen face angle (0–10 deg) resulted in a 34% coefficient of variation and a 60% underestimation of peak stress. The effect of geometry on variation and error was greater than that of interface friction. Taken together, these findings demonstrate the advantages of flash freezing in biomechanical studies of spine cord tissue.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Effect of Flash Freezing on Variability in Spinal Cord Compression Behavior
    typeJournal Paper
    journal volume131
    journal issue11
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4000079
    journal fristpage111010
    identifier eissn1528-8951
    keywordsFriction
    keywordsFreezing
    keywordsBiological tissues
    keywordsCompression
    keywordsCutting
    keywordsGeometry
    keywordsSpinal cord
    keywordsFinite element analysis
    keywordsMechanical behavior
    keywordsStress AND Errors
    treeJournal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian