YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Role of Cortical Shell and Trabecular Fabric in Finite Element Analysis of the Human Vertebral Body

    Source: Journal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 011::page 111003
    Author:
    Yan Chevalier
    ,
    Dieter Pahr
    ,
    Philippe K. Zysset
    DOI: 10.1115/1.3212097
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Classical finite element (FE) models can estimate vertebral stiffness and strength with much lower computational costs than μFE analyses, but the accuracy of these models rely on calibrated material properties that are not necessarily consistent with experimental results. In general, trabecular bone material properties are scaled with computer tomography (CT) density alone, without accounting for local variations in anisotropy or micro-architecture. Moreover, the cortex is often omitted or assigned with a constant thickness. In this work, voxel FE models, as well as surface-based homogenized FE models with topologically-conformed geometry and assigned with experimentally validated properties for bone, were developed from a series of 12 specimens tested up to failure. The effects of changing from a digital mesh to a smooth mesh, including a cortex of variable thickness and/or including heterogeneous trabecular fabric, were investigated. In each case, FE predictions of vertebral stiffness and strength were compared with the experimental gold-standard, and changes in elastic strain energy density and damage distributions were reported. The results showed that a smooth mesh effectively removed zones of artificial damage locations occurring in the ragged edges of the digital mesh. Adding an explicit cortex stiffened and strengthened the models, unloading the trabecular centrum while increasing the correlations to experimental stiffness and strength. Further addition of heterogeneous fabric improved the correlations to stiffness (R2=0.72) and strength (R2=0.89) and moved the damage locations closer to the vertebral endplates, following the local trabecular orientations. It was furthermore demonstrated that predictions of vertebral stiffness and strength of homogenized FE models with topologically-conformed cortical shell and heterogeneous trabecular fabric correlated well with experimental measurements, after assigning purely experimental data for bone without further calibration of material laws at the macroscale of bone. This study successfully demonstrated the limitations of current classical FE methods and provided valuable insights into the damage mechanisms of vertebral bodies.
    keyword(s): Density , Textiles , Measurement , Bone , Finite element analysis , Finite element model , Shells , Stiffness AND Thickness ,
    • Download: (1.348Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Role of Cortical Shell and Trabecular Fabric in Finite Element Analysis of the Human Vertebral Body

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139817
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorYan Chevalier
    contributor authorDieter Pahr
    contributor authorPhilippe K. Zysset
    date accessioned2017-05-09T00:31:28Z
    date available2017-05-09T00:31:28Z
    date copyrightNovember, 2009
    date issued2009
    identifier issn0148-0731
    identifier otherJBENDY-27068#111003_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139817
    description abstractClassical finite element (FE) models can estimate vertebral stiffness and strength with much lower computational costs than μFE analyses, but the accuracy of these models rely on calibrated material properties that are not necessarily consistent with experimental results. In general, trabecular bone material properties are scaled with computer tomography (CT) density alone, without accounting for local variations in anisotropy or micro-architecture. Moreover, the cortex is often omitted or assigned with a constant thickness. In this work, voxel FE models, as well as surface-based homogenized FE models with topologically-conformed geometry and assigned with experimentally validated properties for bone, were developed from a series of 12 specimens tested up to failure. The effects of changing from a digital mesh to a smooth mesh, including a cortex of variable thickness and/or including heterogeneous trabecular fabric, were investigated. In each case, FE predictions of vertebral stiffness and strength were compared with the experimental gold-standard, and changes in elastic strain energy density and damage distributions were reported. The results showed that a smooth mesh effectively removed zones of artificial damage locations occurring in the ragged edges of the digital mesh. Adding an explicit cortex stiffened and strengthened the models, unloading the trabecular centrum while increasing the correlations to experimental stiffness and strength. Further addition of heterogeneous fabric improved the correlations to stiffness (R2=0.72) and strength (R2=0.89) and moved the damage locations closer to the vertebral endplates, following the local trabecular orientations. It was furthermore demonstrated that predictions of vertebral stiffness and strength of homogenized FE models with topologically-conformed cortical shell and heterogeneous trabecular fabric correlated well with experimental measurements, after assigning purely experimental data for bone without further calibration of material laws at the macroscale of bone. This study successfully demonstrated the limitations of current classical FE methods and provided valuable insights into the damage mechanisms of vertebral bodies.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Role of Cortical Shell and Trabecular Fabric in Finite Element Analysis of the Human Vertebral Body
    typeJournal Paper
    journal volume131
    journal issue11
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.3212097
    journal fristpage111003
    identifier eissn1528-8951
    keywordsDensity
    keywordsTextiles
    keywordsMeasurement
    keywordsBone
    keywordsFinite element analysis
    keywordsFinite element model
    keywordsShells
    keywordsStiffness AND Thickness
    treeJournal of Biomechanical Engineering:;2009:;volume( 131 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian