YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Acoustic Measurement Techniques Considering Human Perception

    Source: Journal of Vibration and Acoustics:;2008:;volume( 130 ):;issue: 003::page 31005
    Author:
    Klaus Genuit
    ,
    Wade Bray
    DOI: 10.1115/1.2827453
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Dynamic measurement implies determining the content of signals having spectral structure and energy changing with time, sometimes on very short time scales. Dynamic measurements can present challenges to determine sufficient information in both the time and frequency domains. High resolution in frequency prevents finding short-term peak levels and recognizing true crest factors, and vice versa. The human ear/brain system exceeds the simultaneous time and frequency recognition of conventional measurement methods, further complicating the challenge. People have at least three times better time/frequency resolution than the familiar Fourier transform moved across the time axis, although quite often a compromise block size can be found that gives time/frequency measurement agreeing with human sound perception of both factors. Unlike technical measuring systems, human hearing is also very sensitive to patterns. The presence of tones, varying tones (amplitude and/or frequency), clicks, rattles, splashing sounds, etc., even at low levels in the presence of other less structured noise of considerably higher level, can dominate perception. Human consciousness effectively performs the opposite of averaging, ignoring the absolute value of slowly varying or stationary signals and focusing on things differing at short time bases from their surroundings in both time and frequency. In dynamic measurement, it can be difficult to withdraw an important pattern from the absolute whole. Case studies will be given comparing conventional techniques with three high-resolution time/frequency methods useful in general engineering although developed to model the processes of human sound perception: a hearing model with very rapid time resolution at all frequencies (, 1993, “ Modelle zur Signalverarbeitung im menschlichen Gehör,” dissertation, RWTH Aachen), a relative (pattern) measurement technique subtracting a sliding average in both time and frequency from a running instantaneous spectrum (, 1996, “ A New Approach to Objective Determination of Noise Quality Based on Relative Parameters,” Proceedings of InterNoise, Liverpool, UK), and a Fourier-based window deconvolution method giving pure spectral lines regardless of signal-to-block synchronization and permitting multiplication of frequency resolution for a given block length and time resolution (, 1993, “ Modelle zur Signalverarbeitung im menschlichen Gehör,” dissertation, RWTH Aachen;, 2004, “ Perceptually Related Analysis of Time-Frequency Patterns via a Hearing Model (Sottek), a Pattern-Measurement Algorithm (“Relative Approach”) and a Window-Deconvolution Algorithm,” 147th Meeting, New York, May, Acoustical Society of America, 5aPPb7). Types of noise which particularly benefit from the techniques we will discuss include, but are by no means limited to, time-varying emissions from information technology devices (printers, hard disk drives, servosystems), appliances, HVAC (compressors and controls), hydraulic systems including direct high-pressure fuel injection internal combustion engines, tonal orders from rotating machinery, and environmental noise in workplaces and residences. The three analytic tools presented here are well suited in matching the time-frequency, tonal, and pattern recognition capabilities of human hearing, and offer general engineering capabilities especially involving the fine time-structured behavior of transient and tonal events.
    • Download: (2.689Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Acoustic Measurement Techniques Considering Human Perception

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139603
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorKlaus Genuit
    contributor authorWade Bray
    date accessioned2017-05-09T00:31:02Z
    date available2017-05-09T00:31:02Z
    date copyrightJune, 2008
    date issued2008
    identifier issn1048-9002
    identifier otherJVACEK-28894#031005_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139603
    description abstractDynamic measurement implies determining the content of signals having spectral structure and energy changing with time, sometimes on very short time scales. Dynamic measurements can present challenges to determine sufficient information in both the time and frequency domains. High resolution in frequency prevents finding short-term peak levels and recognizing true crest factors, and vice versa. The human ear/brain system exceeds the simultaneous time and frequency recognition of conventional measurement methods, further complicating the challenge. People have at least three times better time/frequency resolution than the familiar Fourier transform moved across the time axis, although quite often a compromise block size can be found that gives time/frequency measurement agreeing with human sound perception of both factors. Unlike technical measuring systems, human hearing is also very sensitive to patterns. The presence of tones, varying tones (amplitude and/or frequency), clicks, rattles, splashing sounds, etc., even at low levels in the presence of other less structured noise of considerably higher level, can dominate perception. Human consciousness effectively performs the opposite of averaging, ignoring the absolute value of slowly varying or stationary signals and focusing on things differing at short time bases from their surroundings in both time and frequency. In dynamic measurement, it can be difficult to withdraw an important pattern from the absolute whole. Case studies will be given comparing conventional techniques with three high-resolution time/frequency methods useful in general engineering although developed to model the processes of human sound perception: a hearing model with very rapid time resolution at all frequencies (, 1993, “ Modelle zur Signalverarbeitung im menschlichen Gehör,” dissertation, RWTH Aachen), a relative (pattern) measurement technique subtracting a sliding average in both time and frequency from a running instantaneous spectrum (, 1996, “ A New Approach to Objective Determination of Noise Quality Based on Relative Parameters,” Proceedings of InterNoise, Liverpool, UK), and a Fourier-based window deconvolution method giving pure spectral lines regardless of signal-to-block synchronization and permitting multiplication of frequency resolution for a given block length and time resolution (, 1993, “ Modelle zur Signalverarbeitung im menschlichen Gehör,” dissertation, RWTH Aachen;, 2004, “ Perceptually Related Analysis of Time-Frequency Patterns via a Hearing Model (Sottek), a Pattern-Measurement Algorithm (“Relative Approach”) and a Window-Deconvolution Algorithm,” 147th Meeting, New York, May, Acoustical Society of America, 5aPPb7). Types of noise which particularly benefit from the techniques we will discuss include, but are by no means limited to, time-varying emissions from information technology devices (printers, hard disk drives, servosystems), appliances, HVAC (compressors and controls), hydraulic systems including direct high-pressure fuel injection internal combustion engines, tonal orders from rotating machinery, and environmental noise in workplaces and residences. The three analytic tools presented here are well suited in matching the time-frequency, tonal, and pattern recognition capabilities of human hearing, and offer general engineering capabilities especially involving the fine time-structured behavior of transient and tonal events.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDynamic Acoustic Measurement Techniques Considering Human Perception
    typeJournal Paper
    journal volume130
    journal issue3
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.2827453
    journal fristpage31005
    identifier eissn1528-8927
    treeJournal of Vibration and Acoustics:;2008:;volume( 130 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian