YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heat Transfer and Pressure Investigation of Dimple Impingement

    Source: Journal of Turbomachinery:;2008:;volume( 130 ):;issue: 001::page 11003
    Author:
    K. Kanokjaruvijit
    ,
    R. F. Martinez-Botas
    DOI: 10.1115/1.2220048
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Heat transfer and pressure results of an inline array of round jets impinging on a staggered array of dimples are reported with the consideration of various geometric and parametric effects; results are normalized against flat plate data. The heat transfer was measured by using transient wideband liquid crystal method. The geometrical configurations considered were crossflow (or spent-air exit) scheme, dimple geometries, and impinging positions. Three crossflow schemes were tested such as one-way, two-way, and free exits. These led to the idea of the coupling effects of impingement and channel flow depending on which one dominated. Hemispherical and cusped elliptical dimple shapes with the same wetted area were considered and found that both dimples showed the similarity in heat transfer results. Impinging positions on dimples and on flat portions adjacent to dimples were examined. Throughout the study, the pitch of the nozzle holes was kept constant at four jet diameters. The investigated parameters were Reynolds number (ReDj) ranged from 5000 to 11,500, jet-to-plate spacing (H∕Dj) varied from 1 to 12 jet diameters, dimple depths (d∕Dd) of 0.15, 0.25, and 0.29, and dimple curvature (Dj∕Dd) of 0.25, 0.50, and 1.15. The shallow dimples (d∕Dd=0.15) improved heat transfer significantly by 70% at H∕Dj=2 compared to that of the flat surface, while this value was 30% for the deep ones (d∕Dd=0.25). The improvement also occurred to the moderate and high Dj∕Dd. The total pressure was a function of ReDj and H∕Dj when H∕Dj<2, but it was independent of the target plate geometry. The levels of the total pressure loss of the dimpled plates werenot different from those of the flat surface under the same setup conditions. Wall static pressure was measured by using static taps located across each plate. ReDj and H∕Dj affected the level of the static pressure while the dimple depth influenced the stagnation peaks, and the crossflow scheme affected the shape of the peaks.
    keyword(s): Pressure , Heat transfer , Jets , Flat plates AND Momentum ,
    • Download: (1.045Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heat Transfer and Pressure Investigation of Dimple Impingement

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139529
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorK. Kanokjaruvijit
    contributor authorR. F. Martinez-Botas
    date accessioned2017-05-09T00:30:54Z
    date available2017-05-09T00:30:54Z
    date copyrightJanuary, 2008
    date issued2008
    identifier issn0889-504X
    identifier otherJOTUEI-28743#011003_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139529
    description abstractHeat transfer and pressure results of an inline array of round jets impinging on a staggered array of dimples are reported with the consideration of various geometric and parametric effects; results are normalized against flat plate data. The heat transfer was measured by using transient wideband liquid crystal method. The geometrical configurations considered were crossflow (or spent-air exit) scheme, dimple geometries, and impinging positions. Three crossflow schemes were tested such as one-way, two-way, and free exits. These led to the idea of the coupling effects of impingement and channel flow depending on which one dominated. Hemispherical and cusped elliptical dimple shapes with the same wetted area were considered and found that both dimples showed the similarity in heat transfer results. Impinging positions on dimples and on flat portions adjacent to dimples were examined. Throughout the study, the pitch of the nozzle holes was kept constant at four jet diameters. The investigated parameters were Reynolds number (ReDj) ranged from 5000 to 11,500, jet-to-plate spacing (H∕Dj) varied from 1 to 12 jet diameters, dimple depths (d∕Dd) of 0.15, 0.25, and 0.29, and dimple curvature (Dj∕Dd) of 0.25, 0.50, and 1.15. The shallow dimples (d∕Dd=0.15) improved heat transfer significantly by 70% at H∕Dj=2 compared to that of the flat surface, while this value was 30% for the deep ones (d∕Dd=0.25). The improvement also occurred to the moderate and high Dj∕Dd. The total pressure was a function of ReDj and H∕Dj when H∕Dj<2, but it was independent of the target plate geometry. The levels of the total pressure loss of the dimpled plates werenot different from those of the flat surface under the same setup conditions. Wall static pressure was measured by using static taps located across each plate. ReDj and H∕Dj affected the level of the static pressure while the dimple depth influenced the stagnation peaks, and the crossflow scheme affected the shape of the peaks.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHeat Transfer and Pressure Investigation of Dimple Impingement
    typeJournal Paper
    journal volume130
    journal issue1
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.2220048
    journal fristpage11003
    identifier eissn1528-8900
    keywordsPressure
    keywordsHeat transfer
    keywordsJets
    keywordsFlat plates AND Momentum
    treeJournal of Turbomachinery:;2008:;volume( 130 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian