Heat Transfer and Pressure Investigation of Dimple ImpingementSource: Journal of Turbomachinery:;2008:;volume( 130 ):;issue: 001::page 11003DOI: 10.1115/1.2220048Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Heat transfer and pressure results of an inline array of round jets impinging on a staggered array of dimples are reported with the consideration of various geometric and parametric effects; results are normalized against flat plate data. The heat transfer was measured by using transient wideband liquid crystal method. The geometrical configurations considered were crossflow (or spent-air exit) scheme, dimple geometries, and impinging positions. Three crossflow schemes were tested such as one-way, two-way, and free exits. These led to the idea of the coupling effects of impingement and channel flow depending on which one dominated. Hemispherical and cusped elliptical dimple shapes with the same wetted area were considered and found that both dimples showed the similarity in heat transfer results. Impinging positions on dimples and on flat portions adjacent to dimples were examined. Throughout the study, the pitch of the nozzle holes was kept constant at four jet diameters. The investigated parameters were Reynolds number (ReDj) ranged from 5000 to 11,500, jet-to-plate spacing (H∕Dj) varied from 1 to 12 jet diameters, dimple depths (d∕Dd) of 0.15, 0.25, and 0.29, and dimple curvature (Dj∕Dd) of 0.25, 0.50, and 1.15. The shallow dimples (d∕Dd=0.15) improved heat transfer significantly by 70% at H∕Dj=2 compared to that of the flat surface, while this value was 30% for the deep ones (d∕Dd=0.25). The improvement also occurred to the moderate and high Dj∕Dd. The total pressure was a function of ReDj and H∕Dj when H∕Dj<2, but it was independent of the target plate geometry. The levels of the total pressure loss of the dimpled plates werenot different from those of the flat surface under the same setup conditions. Wall static pressure was measured by using static taps located across each plate. ReDj and H∕Dj affected the level of the static pressure while the dimple depth influenced the stagnation peaks, and the crossflow scheme affected the shape of the peaks.
keyword(s): Pressure , Heat transfer , Jets , Flat plates AND Momentum ,
|
Collections
Show full item record
contributor author | K. Kanokjaruvijit | |
contributor author | R. F. Martinez-Botas | |
date accessioned | 2017-05-09T00:30:54Z | |
date available | 2017-05-09T00:30:54Z | |
date copyright | January, 2008 | |
date issued | 2008 | |
identifier issn | 0889-504X | |
identifier other | JOTUEI-28743#011003_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/139529 | |
description abstract | Heat transfer and pressure results of an inline array of round jets impinging on a staggered array of dimples are reported with the consideration of various geometric and parametric effects; results are normalized against flat plate data. The heat transfer was measured by using transient wideband liquid crystal method. The geometrical configurations considered were crossflow (or spent-air exit) scheme, dimple geometries, and impinging positions. Three crossflow schemes were tested such as one-way, two-way, and free exits. These led to the idea of the coupling effects of impingement and channel flow depending on which one dominated. Hemispherical and cusped elliptical dimple shapes with the same wetted area were considered and found that both dimples showed the similarity in heat transfer results. Impinging positions on dimples and on flat portions adjacent to dimples were examined. Throughout the study, the pitch of the nozzle holes was kept constant at four jet diameters. The investigated parameters were Reynolds number (ReDj) ranged from 5000 to 11,500, jet-to-plate spacing (H∕Dj) varied from 1 to 12 jet diameters, dimple depths (d∕Dd) of 0.15, 0.25, and 0.29, and dimple curvature (Dj∕Dd) of 0.25, 0.50, and 1.15. The shallow dimples (d∕Dd=0.15) improved heat transfer significantly by 70% at H∕Dj=2 compared to that of the flat surface, while this value was 30% for the deep ones (d∕Dd=0.25). The improvement also occurred to the moderate and high Dj∕Dd. The total pressure was a function of ReDj and H∕Dj when H∕Dj<2, but it was independent of the target plate geometry. The levels of the total pressure loss of the dimpled plates werenot different from those of the flat surface under the same setup conditions. Wall static pressure was measured by using static taps located across each plate. ReDj and H∕Dj affected the level of the static pressure while the dimple depth influenced the stagnation peaks, and the crossflow scheme affected the shape of the peaks. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Heat Transfer and Pressure Investigation of Dimple Impingement | |
type | Journal Paper | |
journal volume | 130 | |
journal issue | 1 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.2220048 | |
journal fristpage | 11003 | |
identifier eissn | 1528-8900 | |
keywords | Pressure | |
keywords | Heat transfer | |
keywords | Jets | |
keywords | Flat plates AND Momentum | |
tree | Journal of Turbomachinery:;2008:;volume( 130 ):;issue: 001 | |
contenttype | Fulltext |