YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heat Transfer at High Rotation Numbers in a Two-Pass 4:1 Aspect Ratio Rectangular Channel With 45deg Skewed Ribs

    Source: Journal of Turbomachinery:;2008:;volume( 130 ):;issue: 002::page 21019
    Author:
    Fuguo Zhou
    ,
    Sumanta Acharya
    DOI: 10.1115/1.2752185
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Heat transfer measurements are reported for a rotating 4:1 aspect ratio (AR) coolant passage with ribs skewed 45deg to the flow. The study covers Reynolds number (Re) in the range of 10,000–70,000, rotation number (Ro) in the range of 0–0.6, and density ratios (DR) between 0.1 and 0.2. These measurements are done in a rotating heat transfer rig utilizing segmented copper pieces that are individually heated, and thermocouples with slip rings providing the interface between the stationary and rotating frames. The results are compared with the published data obtained in a square channel with similar dimensionless rib-geometry parameters, and with the results obtained for a 4:1 AR smooth channel. As in a 1:1 AR channel, rotation enhances the heat transfer on the destabilized walls (inlet-trailing wall and outlet-leading wall), and decreases the heat transfer ratio on the stabilized walls (inlet-leading wall and outlet-trailing wall). However, the rotation-induced enhancement/degradation for the 4:1 rectangular channel is much weaker than that in the square ribbed channel, especially in the inlet (the first passage). The results on the inlet-leading wall are in contrast to that in the smooth channel with the same AR, where rotation causes heat transfer to increase along the inlet-leading wall at lower Reynolds number (Re=10,000 and 20,000). Higher DR is observed to enhance the heat transfer on both ribbed walls in the inlet (the first passage) and the outlet (the second passage), but the DR effects are considerably weaker than those in a ribbed square channel. Measurements have also been parameterized with respect to the buoyancy parameter and results show the same general trends as those with respect to the rotation number. In addition, pressure drop measurements have been made and the thermal performance factor results are presented.
    keyword(s): Rotation , Flow (Dynamics) , Heat transfer , Channels (Hydraulic engineering) , Buoyancy , Density , Copper , Measurement AND Coolants ,
    • Download: (1.595Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heat Transfer at High Rotation Numbers in a Two-Pass 4:1 Aspect Ratio Rectangular Channel With 45deg Skewed Ribs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139519
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorFuguo Zhou
    contributor authorSumanta Acharya
    date accessioned2017-05-09T00:30:53Z
    date available2017-05-09T00:30:53Z
    date copyrightApril, 2008
    date issued2008
    identifier issn0889-504X
    identifier otherJOTUEI-28745#021019_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139519
    description abstractHeat transfer measurements are reported for a rotating 4:1 aspect ratio (AR) coolant passage with ribs skewed 45deg to the flow. The study covers Reynolds number (Re) in the range of 10,000–70,000, rotation number (Ro) in the range of 0–0.6, and density ratios (DR) between 0.1 and 0.2. These measurements are done in a rotating heat transfer rig utilizing segmented copper pieces that are individually heated, and thermocouples with slip rings providing the interface between the stationary and rotating frames. The results are compared with the published data obtained in a square channel with similar dimensionless rib-geometry parameters, and with the results obtained for a 4:1 AR smooth channel. As in a 1:1 AR channel, rotation enhances the heat transfer on the destabilized walls (inlet-trailing wall and outlet-leading wall), and decreases the heat transfer ratio on the stabilized walls (inlet-leading wall and outlet-trailing wall). However, the rotation-induced enhancement/degradation for the 4:1 rectangular channel is much weaker than that in the square ribbed channel, especially in the inlet (the first passage). The results on the inlet-leading wall are in contrast to that in the smooth channel with the same AR, where rotation causes heat transfer to increase along the inlet-leading wall at lower Reynolds number (Re=10,000 and 20,000). Higher DR is observed to enhance the heat transfer on both ribbed walls in the inlet (the first passage) and the outlet (the second passage), but the DR effects are considerably weaker than those in a ribbed square channel. Measurements have also been parameterized with respect to the buoyancy parameter and results show the same general trends as those with respect to the rotation number. In addition, pressure drop measurements have been made and the thermal performance factor results are presented.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHeat Transfer at High Rotation Numbers in a Two-Pass 4:1 Aspect Ratio Rectangular Channel With 45deg Skewed Ribs
    typeJournal Paper
    journal volume130
    journal issue2
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.2752185
    journal fristpage21019
    identifier eissn1528-8900
    keywordsRotation
    keywordsFlow (Dynamics)
    keywordsHeat transfer
    keywordsChannels (Hydraulic engineering)
    keywordsBuoyancy
    keywordsDensity
    keywordsCopper
    keywordsMeasurement AND Coolants
    treeJournal of Turbomachinery:;2008:;volume( 130 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian