YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Flow Structure Investigation of Compound Angled Film Cooling

    Source: Journal of Turbomachinery:;2008:;volume( 130 ):;issue: 003::page 31005
    Author:
    Vipluv Aga
    ,
    Martin Rose
    ,
    Reza S. Abhari
    DOI: 10.1115/1.2775491
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The experimental investigation of film-cooling flow structure provides reliable data for calibrating and validating a 3D feature based computational fluid dynamics (CFD) model being developed synchronously at the ETH Zurich. This paper reports on the flow structure of a film-cooling jet emanating from one hole in a row of holes angled 20 deg to the surface of a flat plate having a 45 deg lateral angle to the freestream flow in a steady flow, flat plate wind tunnel. This facility simulates a film-cooling row typically found on a turbine blade, giving engine representative nondimensionals in terms of geometry and operating conditions. The main flow is heated and the injected coolant is cooled strongly to obtain the requisite density ratio. All three velocity components were measured using a nonintrusive stereoscopic particle image velocimetry (PIV) system. The blowing ratio and density ratio are varied for a single compound angled geometry, and the complex three dimensional flow is investigated with special regard to vortical structure.
    keyword(s): Flow (Dynamics) , Cooling , Boundary layers AND Coolants ,
    • Download: (1.510Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Flow Structure Investigation of Compound Angled Film Cooling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139477
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorVipluv Aga
    contributor authorMartin Rose
    contributor authorReza S. Abhari
    date accessioned2017-05-09T00:30:46Z
    date available2017-05-09T00:30:46Z
    date copyrightJuly, 2008
    date issued2008
    identifier issn0889-504X
    identifier otherJOTUEI-28748#031005_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139477
    description abstractThe experimental investigation of film-cooling flow structure provides reliable data for calibrating and validating a 3D feature based computational fluid dynamics (CFD) model being developed synchronously at the ETH Zurich. This paper reports on the flow structure of a film-cooling jet emanating from one hole in a row of holes angled 20 deg to the surface of a flat plate having a 45 deg lateral angle to the freestream flow in a steady flow, flat plate wind tunnel. This facility simulates a film-cooling row typically found on a turbine blade, giving engine representative nondimensionals in terms of geometry and operating conditions. The main flow is heated and the injected coolant is cooled strongly to obtain the requisite density ratio. All three velocity components were measured using a nonintrusive stereoscopic particle image velocimetry (PIV) system. The blowing ratio and density ratio are varied for a single compound angled geometry, and the complex three dimensional flow is investigated with special regard to vortical structure.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Flow Structure Investigation of Compound Angled Film Cooling
    typeJournal Paper
    journal volume130
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.2775491
    journal fristpage31005
    identifier eissn1528-8900
    keywordsFlow (Dynamics)
    keywordsCooling
    keywordsBoundary layers AND Coolants
    treeJournal of Turbomachinery:;2008:;volume( 130 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian