YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bump and Trench Modifications to Film-Cooling Holes at the Vane-Endwall Junction

    Source: Journal of Turbomachinery:;2008:;volume( 130 ):;issue: 004::page 41013
    Author:
    N. Sundaram
    ,
    K. A. Thole
    DOI: 10.1115/1.2812933
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The endwall of a first-stage vane experiences high heat transfer and low adiabatic effectiveness levels because of high turbine operating temperatures and formation of leading edge vortices. These vortices lift the coolant off the endwall and pull the hot mainstream gases toward it. The region of focus for this study is the vane-endwall junction region near the stagnation location where cooling is very difficult. Two different film-cooling hole modifications, namely, trenches and bumps, were evaluated to improve the cooling in the leading edge region. This study uses a large-scale turbine vane cascade with a single row of axial film-cooling holes at the leading edge of the vane endwall. Individual hole trenches and row trenches were placed along the complete row of film-cooling holes. Two-dimensional semi-elliptically shaped bumps were also evaluated by placing the bumps upstream and downstream of the film-cooling row. Tests were carried out for different trench depths and bump heights under varying blowing ratios. The results indicated that a row trench placed along the row of film-cooling holes showed a greater enhancement in adiabatic effectiveness levels when compared to individual hole trenches and bumps. All geometries considered produced an overall improvement to adiabatic effectiveness levels.
    keyword(s): Cooling , Coolants AND Junctions ,
    • Download: (1.062Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bump and Trench Modifications to Film-Cooling Holes at the Vane-Endwall Junction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139463
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorN. Sundaram
    contributor authorK. A. Thole
    date accessioned2017-05-09T00:30:45Z
    date available2017-05-09T00:30:45Z
    date copyrightOctober, 2008
    date issued2008
    identifier issn0889-504X
    identifier otherJOTUEI-28750#041013_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139463
    description abstractThe endwall of a first-stage vane experiences high heat transfer and low adiabatic effectiveness levels because of high turbine operating temperatures and formation of leading edge vortices. These vortices lift the coolant off the endwall and pull the hot mainstream gases toward it. The region of focus for this study is the vane-endwall junction region near the stagnation location where cooling is very difficult. Two different film-cooling hole modifications, namely, trenches and bumps, were evaluated to improve the cooling in the leading edge region. This study uses a large-scale turbine vane cascade with a single row of axial film-cooling holes at the leading edge of the vane endwall. Individual hole trenches and row trenches were placed along the complete row of film-cooling holes. Two-dimensional semi-elliptically shaped bumps were also evaluated by placing the bumps upstream and downstream of the film-cooling row. Tests were carried out for different trench depths and bump heights under varying blowing ratios. The results indicated that a row trench placed along the row of film-cooling holes showed a greater enhancement in adiabatic effectiveness levels when compared to individual hole trenches and bumps. All geometries considered produced an overall improvement to adiabatic effectiveness levels.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBump and Trench Modifications to Film-Cooling Holes at the Vane-Endwall Junction
    typeJournal Paper
    journal volume130
    journal issue4
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.2812933
    journal fristpage41013
    identifier eissn1528-8900
    keywordsCooling
    keywordsCoolants AND Junctions
    treeJournal of Turbomachinery:;2008:;volume( 130 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian