YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Markovian Finishing Process

    Source: Journal of Tribology:;2008:;volume( 130 ):;issue: 002::page 21601
    Author:
    M. A. Mohamed
    DOI: 10.1115/1.2842295
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Addressed is the mechanism of finishing processes for a workpiece surface using hard abrasive tools such as grinding, abrasive paper, and filing. The mechanism is intended to monitor the gradual changes of the workpiece surface state roughness as the tool is applied for several strokes. Based on a number of common features, the present study simulates each rubbing stroke as a Markov process, and each set of several strokes as a Markov chain. In the simulating model, the discrete probabilistic properties of a specific tool abrasive surface can be expressed in terms of a corresponding Markov matrix operator. Thus, the tool action after one rubbing stroke is obtained via a matrix mapping from a given state roughness to a subsequent state roughness of the workpiece surface. Although the suggested model is capable to handle a comprehensive finishing mechanism, the study focuses on the simple case of zero feeding using a hard abrasive tool, in which the Markov matrix shrinks to a special triangular form. Main findings show that major aspects of the tool surface are transferred to the stepwise roughness state of the workpiece immediately after the first stroke. In addition, regardless of the initial roughness state of the workpiece surface, whether with flat or randomly distributed heights, the ultimate state roughness is unique and definitely features the theoretical case of a plain flat surface. However, this theoretical case is infeasible since it can only be reached after infinite number of strokes.
    • Download: (117.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Markovian Finishing Process

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139414
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorM. A. Mohamed
    date accessioned2017-05-09T00:30:41Z
    date available2017-05-09T00:30:41Z
    date copyrightApril, 2008
    date issued2008
    identifier issn0742-4787
    identifier otherJOTRE9-28757#021601_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139414
    description abstractAddressed is the mechanism of finishing processes for a workpiece surface using hard abrasive tools such as grinding, abrasive paper, and filing. The mechanism is intended to monitor the gradual changes of the workpiece surface state roughness as the tool is applied for several strokes. Based on a number of common features, the present study simulates each rubbing stroke as a Markov process, and each set of several strokes as a Markov chain. In the simulating model, the discrete probabilistic properties of a specific tool abrasive surface can be expressed in terms of a corresponding Markov matrix operator. Thus, the tool action after one rubbing stroke is obtained via a matrix mapping from a given state roughness to a subsequent state roughness of the workpiece surface. Although the suggested model is capable to handle a comprehensive finishing mechanism, the study focuses on the simple case of zero feeding using a hard abrasive tool, in which the Markov matrix shrinks to a special triangular form. Main findings show that major aspects of the tool surface are transferred to the stepwise roughness state of the workpiece immediately after the first stroke. In addition, regardless of the initial roughness state of the workpiece surface, whether with flat or randomly distributed heights, the ultimate state roughness is unique and definitely features the theoretical case of a plain flat surface. However, this theoretical case is infeasible since it can only be reached after infinite number of strokes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Markovian Finishing Process
    typeJournal Paper
    journal volume130
    journal issue2
    journal titleJournal of Tribology
    identifier doi10.1115/1.2842295
    journal fristpage21601
    identifier eissn1528-8897
    treeJournal of Tribology:;2008:;volume( 130 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian