YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Windage Power Loss Modeling of a Smooth Rotor Supported by Homopolar Active Magnetic Bearings

    Source: Journal of Tribology:;2008:;volume( 130 ):;issue: 002::page 21101
    Author:
    M. Saint Raymond
    ,
    P. E. Allaire
    ,
    M. E. Kasarda
    DOI: 10.1115/1.2806203
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Rotors supported by active magnetic bearings (AMBs) can spin at high surface speeds with relatively low power losses. This makes them particularly attractive for use in flywheels for energy storage in applications such as electric vehicles and uninterruptible power supplies. In order to optimize efficiency in these and other applications, the loss mechanisms associated with magnetic bearings and rotating machinery must be well understood. The primary parasitic loss mechanisms in an AMB include complex magnetic losses, due to eddy currents and hysteresis, and windage losses along the entire rotor in nonvacuum environments. In low-loss magnetic bearing designs, the windage loss component along the rotor can become dominant at high speeds, and the need for accurate windage models becomes even more critical. This study extends previous AMB power loss work by evaluating five different windage loss models using the experimental rundown data from the previous work. Each of the five windage models, along with standard models of eddy current and hysteresis losses, are used to reduce the rundown data into the associated power loss components. A comparison is then completed comparing the windage power loss component extracted through the rundown data reduction scheme to the associated analytical windage prediction in order to identify the most accurate model for calculating windage losses along a smooth rotor. Five empirical flat-plate drag coefficient models are implemented, four turbulent and one laminar. An empirical flat-plate turbulent boundary layer formula (referred to here as “Model 2”) developed by Prandtl and Schlichting displayed the best agreement between experimentally extracted and analytically predicted windage loss values. The most accurate model formula (Model 2) dictates that the frequency dependency of windage loss is both logarithmic and power based and represents the minimum error between experimentally extracted and analytically predicted losses of all models in the study of high-speed power losses in a smooth rotor supported in AMBs.
    • Download: (326.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Windage Power Loss Modeling of a Smooth Rotor Supported by Homopolar Active Magnetic Bearings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139398
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorM. Saint Raymond
    contributor authorP. E. Allaire
    contributor authorM. E. Kasarda
    date accessioned2017-05-09T00:30:40Z
    date available2017-05-09T00:30:40Z
    date copyrightApril, 2008
    date issued2008
    identifier issn0742-4787
    identifier otherJOTRE9-28757#021101_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139398
    description abstractRotors supported by active magnetic bearings (AMBs) can spin at high surface speeds with relatively low power losses. This makes them particularly attractive for use in flywheels for energy storage in applications such as electric vehicles and uninterruptible power supplies. In order to optimize efficiency in these and other applications, the loss mechanisms associated with magnetic bearings and rotating machinery must be well understood. The primary parasitic loss mechanisms in an AMB include complex magnetic losses, due to eddy currents and hysteresis, and windage losses along the entire rotor in nonvacuum environments. In low-loss magnetic bearing designs, the windage loss component along the rotor can become dominant at high speeds, and the need for accurate windage models becomes even more critical. This study extends previous AMB power loss work by evaluating five different windage loss models using the experimental rundown data from the previous work. Each of the five windage models, along with standard models of eddy current and hysteresis losses, are used to reduce the rundown data into the associated power loss components. A comparison is then completed comparing the windage power loss component extracted through the rundown data reduction scheme to the associated analytical windage prediction in order to identify the most accurate model for calculating windage losses along a smooth rotor. Five empirical flat-plate drag coefficient models are implemented, four turbulent and one laminar. An empirical flat-plate turbulent boundary layer formula (referred to here as “Model 2”) developed by Prandtl and Schlichting displayed the best agreement between experimentally extracted and analytically predicted windage loss values. The most accurate model formula (Model 2) dictates that the frequency dependency of windage loss is both logarithmic and power based and represents the minimum error between experimentally extracted and analytically predicted losses of all models in the study of high-speed power losses in a smooth rotor supported in AMBs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleWindage Power Loss Modeling of a Smooth Rotor Supported by Homopolar Active Magnetic Bearings
    typeJournal Paper
    journal volume130
    journal issue2
    journal titleJournal of Tribology
    identifier doi10.1115/1.2806203
    journal fristpage21101
    identifier eissn1528-8897
    treeJournal of Tribology:;2008:;volume( 130 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian