A Model for Contact and Static Friction of Nominally Flat Rough Surfaces Under Full Stick Contact ConditionSource: Journal of Tribology:;2008:;volume( 130 ):;issue: 003::page 31401DOI: 10.1115/1.2908925Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: A model for elastic-plastic nominally flat contacting rough surfaces under combined normal and tangential loading with full stick contact condition is presented. The model incorporates an accurate finite element analysis for contact and sliding inception of a single elastic-plastic asperity in a statistical representation of surface roughness. It includes the effect of junction growth and treats the sliding inception as a failure mechanism, which is characterized by loss of tangential stiffness. A comparison between the present model and a previously published friction model shows that the latter severely underestimates the maximum friction force by up to three orders of magnitude. Strong effects of the normal load, nominal contact area, mechanical properties, and surface roughness on the static friction coefficient are found, in breach of the classical laws of friction. Empirical equations for the maximum friction force, static friction coefficient, real contact area due to the normal load alone and at sliding inception as functions of the normal load, material properties, and surface roughness are presented and compared with some limited available experimental results.
keyword(s): Force , Plasticity , Friction , Surface roughness , Stress , Stiction , Junctions AND Equations ,
|
Collections
Show full item record
contributor author | D. Cohen | |
contributor author | Y. Kligerman | |
contributor author | I. Etsion | |
date accessioned | 2017-05-09T00:30:38Z | |
date available | 2017-05-09T00:30:38Z | |
date copyright | July, 2008 | |
date issued | 2008 | |
identifier issn | 0742-4787 | |
identifier other | JOTRE9-28759#031401_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/139383 | |
description abstract | A model for elastic-plastic nominally flat contacting rough surfaces under combined normal and tangential loading with full stick contact condition is presented. The model incorporates an accurate finite element analysis for contact and sliding inception of a single elastic-plastic asperity in a statistical representation of surface roughness. It includes the effect of junction growth and treats the sliding inception as a failure mechanism, which is characterized by loss of tangential stiffness. A comparison between the present model and a previously published friction model shows that the latter severely underestimates the maximum friction force by up to three orders of magnitude. Strong effects of the normal load, nominal contact area, mechanical properties, and surface roughness on the static friction coefficient are found, in breach of the classical laws of friction. Empirical equations for the maximum friction force, static friction coefficient, real contact area due to the normal load alone and at sliding inception as functions of the normal load, material properties, and surface roughness are presented and compared with some limited available experimental results. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | A Model for Contact and Static Friction of Nominally Flat Rough Surfaces Under Full Stick Contact Condition | |
type | Journal Paper | |
journal volume | 130 | |
journal issue | 3 | |
journal title | Journal of Tribology | |
identifier doi | 10.1115/1.2908925 | |
journal fristpage | 31401 | |
identifier eissn | 1528-8897 | |
keywords | Force | |
keywords | Plasticity | |
keywords | Friction | |
keywords | Surface roughness | |
keywords | Stress | |
keywords | Stiction | |
keywords | Junctions AND Equations | |
tree | Journal of Tribology:;2008:;volume( 130 ):;issue: 003 | |
contenttype | Fulltext |