YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermal Simulation of an Arbitrary Residual Stress Field in a Fully or Partially Autofrettaged Thick-Walled Spherical Pressure Vessel

    Source: Journal of Pressure Vessel Technology:;2008:;volume( 130 ):;issue: 003::page 31201
    Author:
    M. Perl
    DOI: 10.1115/1.2937762
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The equivalent thermal load was previously shown to be the only feasible method by which the residual stresses due to autofrettage and its redistribution, as a result of cracking, can be implemented in a finite element (FE) analysis of a fully or partially autofrettaged thick-walled cylindrical pressure vessel. The present analysis involves developing a similar methodology for treating an autofrettaged thick-walled spherical pressure vessel. A general procedure for evaluating the equivalent temperature loading for simulating an arbitrary, analytical or numerical spherosymmetric autofrettage residual stress field in a spherical pressure vessel is developed. Once presented, the algorithm is applied to two distinct cases. In the first case, an analytical expression for the equivalent thermal loading is obtained for the ideal autofrettage stress field in a spherical shell. In the second case, the algorithm is applied to the discrete numerical values of a realistic autofrettage residual stress field incorporating the Bauschinger effect. As a result, a discrete equivalent temperature field is obtained. Furthermore, a FE analysis is performed for each of the above cases, applying the respective temperature field to the spherical vessel. The induced stress fields are evaluated for each case and then compared to the original stress. The FE results prove that the proposed procedure yields equivalent temperature fields that in turn simulate very accurately the residual stress fields for both the ideal and the realistic autofrettage cases.
    • Download: (273.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermal Simulation of an Arbitrary Residual Stress Field in a Fully or Partially Autofrettaged Thick-Walled Spherical Pressure Vessel

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139175
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorM. Perl
    date accessioned2017-05-09T00:30:15Z
    date available2017-05-09T00:30:15Z
    date copyrightAugust, 2008
    date issued2008
    identifier issn0094-9930
    identifier otherJPVTAS-28496#031201_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139175
    description abstractThe equivalent thermal load was previously shown to be the only feasible method by which the residual stresses due to autofrettage and its redistribution, as a result of cracking, can be implemented in a finite element (FE) analysis of a fully or partially autofrettaged thick-walled cylindrical pressure vessel. The present analysis involves developing a similar methodology for treating an autofrettaged thick-walled spherical pressure vessel. A general procedure for evaluating the equivalent temperature loading for simulating an arbitrary, analytical or numerical spherosymmetric autofrettage residual stress field in a spherical pressure vessel is developed. Once presented, the algorithm is applied to two distinct cases. In the first case, an analytical expression for the equivalent thermal loading is obtained for the ideal autofrettage stress field in a spherical shell. In the second case, the algorithm is applied to the discrete numerical values of a realistic autofrettage residual stress field incorporating the Bauschinger effect. As a result, a discrete equivalent temperature field is obtained. Furthermore, a FE analysis is performed for each of the above cases, applying the respective temperature field to the spherical vessel. The induced stress fields are evaluated for each case and then compared to the original stress. The FE results prove that the proposed procedure yields equivalent temperature fields that in turn simulate very accurately the residual stress fields for both the ideal and the realistic autofrettage cases.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThermal Simulation of an Arbitrary Residual Stress Field in a Fully or Partially Autofrettaged Thick-Walled Spherical Pressure Vessel
    typeJournal Paper
    journal volume130
    journal issue3
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.2937762
    journal fristpage31201
    identifier eissn1528-8978
    treeJournal of Pressure Vessel Technology:;2008:;volume( 130 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian