YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Methylcellulose∕Agarose Hydrogel System to Release Therapeutic Agents

    Source: Journal of Medical Devices:;2008:;volume( 002 ):;issue: 002::page 27537
    Author:
    Eric J. Minner
    ,
    Ryan J. Gilbert
    DOI: 10.1115/1.2927436
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Our laboratory has previously developed an injectable hydrogel blend consisting of agarose and methylcellulose that solidifies at physiological temperatures. This study examined the feasibility of loading a chemical species into the hydrogel blend for controlled release. Free radical formation and excessive inflammation following initial central nervous system (CNS) trauma contribute to secondary injury. Therefore, the anti-oxidant glutathione and the anti-inflammatory cytokine interleukin-10 (IL-10) were loaded into the hydrogel blend for the purposes of neutralizing free radicals generated and inhibiting excessive inflammation following CNS injury, respectively. Using Ellman’s reagent, glutathione release from the hydrogel was monitored, and data from these experiments reveal that the agarose-methylcellulose hydrogel blend delivers glutathione for up to five days in vitro. Similar experiments were performed on IL-10 release, which was released for up to four days. Recent experiments have focused on implementing the glutathione-containing hydrogel in a neuronal culture model that contains elevated levels of free radical. In addition, other experiments have focused on implementing the IL-10-containing hydrogel in a monocyte culture model and observing the effects of tissue necrosis factor alpha (TNF‐α) production. Based on these preliminary findings, hydrogel blends consisting of agarose and methylcellulose loaded with glutathione and∕or IL-10 could potentially spare uninjured neurons from secondary injury. Future experiments will utilize a rat spinal cord injury model to further evaluate the efficacy of the hydrogel system. In addition to its use as an injury intervention, the hydrogel system also has the potential for use as a coating in implantable devices, especially in the CNS.
    • Download: (28.47Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Methylcellulose∕Agarose Hydrogel System to Release Therapeutic Agents

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139045
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorEric J. Minner
    contributor authorRyan J. Gilbert
    date accessioned2017-05-09T00:29:58Z
    date available2017-05-09T00:29:58Z
    date copyrightJune, 2008
    date issued2008
    identifier issn1932-6181
    identifier otherJMDOA4-27991#027537_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139045
    description abstractOur laboratory has previously developed an injectable hydrogel blend consisting of agarose and methylcellulose that solidifies at physiological temperatures. This study examined the feasibility of loading a chemical species into the hydrogel blend for controlled release. Free radical formation and excessive inflammation following initial central nervous system (CNS) trauma contribute to secondary injury. Therefore, the anti-oxidant glutathione and the anti-inflammatory cytokine interleukin-10 (IL-10) were loaded into the hydrogel blend for the purposes of neutralizing free radicals generated and inhibiting excessive inflammation following CNS injury, respectively. Using Ellman’s reagent, glutathione release from the hydrogel was monitored, and data from these experiments reveal that the agarose-methylcellulose hydrogel blend delivers glutathione for up to five days in vitro. Similar experiments were performed on IL-10 release, which was released for up to four days. Recent experiments have focused on implementing the glutathione-containing hydrogel in a neuronal culture model that contains elevated levels of free radical. In addition, other experiments have focused on implementing the IL-10-containing hydrogel in a monocyte culture model and observing the effects of tissue necrosis factor alpha (TNF‐α) production. Based on these preliminary findings, hydrogel blends consisting of agarose and methylcellulose loaded with glutathione and∕or IL-10 could potentially spare uninjured neurons from secondary injury. Future experiments will utilize a rat spinal cord injury model to further evaluate the efficacy of the hydrogel system. In addition to its use as an injury intervention, the hydrogel system also has the potential for use as a coating in implantable devices, especially in the CNS.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMethylcellulose∕Agarose Hydrogel System to Release Therapeutic Agents
    typeJournal Paper
    journal volume2
    journal issue2
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.2927436
    journal fristpage27537
    identifier eissn1932-619X
    treeJournal of Medical Devices:;2008:;volume( 002 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian