YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Novel re-entrant porous composite structure: a potential for orthopaedic applications

    Source: Journal of Medical Devices:;2008:;volume( 002 ):;issue: 002::page 27532
    Author:
    Nicolas V. Jaumard
    ,
    Elizabeth A. Friis
    ,
    James Smay
    ,
    Jian Xu
    DOI: 10.1115/1.2932757
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: It was hypothesized that the nonlinear load-displacement relationship displayed by bone could be conferred on an implant by tailoring its structure, yielding an enhanced mechanical stimulation of the tissues. Composite structures would feature piezoelectric properties that could also stimulate osteogenesis. Preliminary mechanical and electromechanical investigations of such porous structures are presented. Initial trial bowtie specimens with various aspect ratii were made from Nickel powder via a solid free form process and from stainless steel shim stocks. Poled Barium Titanate plates were sandwiched between stainless steel bowtie cells to create composite structures. Results: Under quasi-static compression, the Nickel structures displayed a nonlinear mechanical behavior at small strains and an overall strain-stress relationship similar to bone. Under cyclic compressive tests to 0.6 percent strain, all structures presented a repeatable nonlinear strain-stress behavior. The curves were fitted by a second-order polynomial whose coefficients are function of the relative density of the structure to a power n. Composite stainless steel/BaTiO3 bowtie structures confirmed that their electromechanical properties can be tailored. Discussion: Certain patients present metabolic degeneration that hamper bone healing. A ductile and tough structural material with piezoelectric properties such as the new composite structures in development presents the potential to overcome those limitations. They could have the advantages of existing devices without some of the drawbacks. Those porous implants may reduce the needs, costs, and risks linked to the additional use and implementation of an electrical stimulator and BMPs. Furthermore, the solid free form technique gives control over the mechanical properties of the structure. Thus, the mechanotransduction activity of biologic cells can be fully exploited to trigger a faster implant-tissue bonding, which could lead to reduction of surgical cost and time.
    • Download: (26.92Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Novel re-entrant porous composite structure: a potential for orthopaedic applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139039
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorNicolas V. Jaumard
    contributor authorElizabeth A. Friis
    contributor authorJames Smay
    contributor authorJian Xu
    date accessioned2017-05-09T00:29:58Z
    date available2017-05-09T00:29:58Z
    date copyrightJune, 2008
    date issued2008
    identifier issn1932-6181
    identifier otherJMDOA4-27991#027532_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139039
    description abstractIt was hypothesized that the nonlinear load-displacement relationship displayed by bone could be conferred on an implant by tailoring its structure, yielding an enhanced mechanical stimulation of the tissues. Composite structures would feature piezoelectric properties that could also stimulate osteogenesis. Preliminary mechanical and electromechanical investigations of such porous structures are presented. Initial trial bowtie specimens with various aspect ratii were made from Nickel powder via a solid free form process and from stainless steel shim stocks. Poled Barium Titanate plates were sandwiched between stainless steel bowtie cells to create composite structures. Results: Under quasi-static compression, the Nickel structures displayed a nonlinear mechanical behavior at small strains and an overall strain-stress relationship similar to bone. Under cyclic compressive tests to 0.6 percent strain, all structures presented a repeatable nonlinear strain-stress behavior. The curves were fitted by a second-order polynomial whose coefficients are function of the relative density of the structure to a power n. Composite stainless steel/BaTiO3 bowtie structures confirmed that their electromechanical properties can be tailored. Discussion: Certain patients present metabolic degeneration that hamper bone healing. A ductile and tough structural material with piezoelectric properties such as the new composite structures in development presents the potential to overcome those limitations. They could have the advantages of existing devices without some of the drawbacks. Those porous implants may reduce the needs, costs, and risks linked to the additional use and implementation of an electrical stimulator and BMPs. Furthermore, the solid free form technique gives control over the mechanical properties of the structure. Thus, the mechanotransduction activity of biologic cells can be fully exploited to trigger a faster implant-tissue bonding, which could lead to reduction of surgical cost and time.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNovel re-entrant porous composite structure: a potential for orthopaedic applications
    typeJournal Paper
    journal volume2
    journal issue2
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.2932757
    journal fristpage27532
    identifier eissn1932-619X
    treeJournal of Medical Devices:;2008:;volume( 002 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian