YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Non-Intrusive ECG Measurement on Vehicle Steering Wheel and Driver Seat

    Source: Journal of Medical Devices:;2008:;volume( 002 ):;issue: 002::page 27520
    Author:
    Shan Hu
    ,
    Ryan Bowlds
    ,
    Xun Yu
    DOI: 10.1115/1.2936201
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Driver drowsiness is one of the major causes of deadly traffic accidents. Continuous monitoring of drivers’ drowsiness thus is of great importance for preventing drowsiness-caused accidents. Previous psychophysiological studies have shown that heart rate variability (HRV) has established differences between waking and sleep stages. This offers a way to detect driver’s drowsiness by analyzing HRV, which is typically measured and analyzed from electrocardiogram (ECG) signal. Although ECG measurement techniques are well developed, most of them involve electrode contacts on chest or head. Wiring and discomfort problems inherent in those techniques prevent implementing them on cars. This research develops two non-intrusive real-time ECG measurement methods for drivers. In the first method, each half of the steering wheel is wrapped with conductive fabric as electrode and is isolated to each other. In the second one, two pieces of conductive fabric with the same dimension are placed on the driver seat’s backrest. Signals from conductive fabric electrodes are filtered by differential low pass, band pass and notch filters to amplify ECG signals and suppress noise. Noise whose frequency overlaps with the frequency range of ECG signal cannot be eliminated by these filters. To address this challenge, an adaptive filter is employed for baseline noise cancellation. Experimental tests show that both ECG measurement methods can provide clear ECG signals for further HRV analysis, although signals from the steering wheel are of better quality. Test results also demonstrate that the adaptive filter can effectively cancel baseline noise.
    • Download: (28.88Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Non-Intrusive ECG Measurement on Vehicle Steering Wheel and Driver Seat

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139026
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorShan Hu
    contributor authorRyan Bowlds
    contributor authorXun Yu
    date accessioned2017-05-09T00:29:56Z
    date available2017-05-09T00:29:56Z
    date copyrightJune, 2008
    date issued2008
    identifier issn1932-6181
    identifier otherJMDOA4-27991#027520_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139026
    description abstractDriver drowsiness is one of the major causes of deadly traffic accidents. Continuous monitoring of drivers’ drowsiness thus is of great importance for preventing drowsiness-caused accidents. Previous psychophysiological studies have shown that heart rate variability (HRV) has established differences between waking and sleep stages. This offers a way to detect driver’s drowsiness by analyzing HRV, which is typically measured and analyzed from electrocardiogram (ECG) signal. Although ECG measurement techniques are well developed, most of them involve electrode contacts on chest or head. Wiring and discomfort problems inherent in those techniques prevent implementing them on cars. This research develops two non-intrusive real-time ECG measurement methods for drivers. In the first method, each half of the steering wheel is wrapped with conductive fabric as electrode and is isolated to each other. In the second one, two pieces of conductive fabric with the same dimension are placed on the driver seat’s backrest. Signals from conductive fabric electrodes are filtered by differential low pass, band pass and notch filters to amplify ECG signals and suppress noise. Noise whose frequency overlaps with the frequency range of ECG signal cannot be eliminated by these filters. To address this challenge, an adaptive filter is employed for baseline noise cancellation. Experimental tests show that both ECG measurement methods can provide clear ECG signals for further HRV analysis, although signals from the steering wheel are of better quality. Test results also demonstrate that the adaptive filter can effectively cancel baseline noise.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNon-Intrusive ECG Measurement on Vehicle Steering Wheel and Driver Seat
    typeJournal Paper
    journal volume2
    journal issue2
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.2936201
    journal fristpage27520
    identifier eissn1932-619X
    treeJournal of Medical Devices:;2008:;volume( 002 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian