YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical Design for Modularity of Laparoscopic Tools

    Source: Journal of Medical Devices:;2008:;volume( 002 ):;issue: 002::page 27508
    Author:
    David J. Miller
    ,
    Carl A. Nelson
    DOI: 10.1115/1.2932440
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Background: A functional analysis of current laparoscopic surgical technology prompted a redesign to provide multiple functionalities within a single tool. Novel mechanisms were needed to actuate and deploy functional tips to the surgical site from their storage locations. Methods: Functional Decomposition was used to determine problems with the current minimally invasive surgery (MIS) paradigm. Axiomatic Design was used to ensure an efficient design. Quality Function Deployment was used to mathematically determine important design criteria. Results: The actuation mechanism transfers squeezing motion from the hand through a gear train to the distal end of the tool where a pin-slot mechanism actuates the tool tip. An ergonomic slider mechanism translates linear thumb motion into rotation of the tool’s shaft through a gear train. A binary ratcheting mechanism is used to lock or unlock the tool with identical motions. Methods for indexing functional tips within the tool and interfacing the tips with a lead screw were designed for a modular tool. Rotary indexing of the tool cartridge is done using a Geneva-type mechanism and cam∕follower to provide positive locking once the tip is in place. Proper alignment of the tool tip with the actuation∕shuttling screw is accomplished using a screw∕wedge assembly. Conclusions: Benefits include multiple functionalities in a single tool, ergonomic benefits of an increased I∕O force scaling, decreased out-of-plane motion required to rotate the tool’s shaft and decreased cognitive effort required to lock and unlock the tool’s jaws.
    • Download: (25.98Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical Design for Modularity of Laparoscopic Tools

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/139013
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorDavid J. Miller
    contributor authorCarl A. Nelson
    date accessioned2017-05-09T00:29:55Z
    date available2017-05-09T00:29:55Z
    date copyrightJune, 2008
    date issued2008
    identifier issn1932-6181
    identifier otherJMDOA4-27991#027508_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139013
    description abstractBackground: A functional analysis of current laparoscopic surgical technology prompted a redesign to provide multiple functionalities within a single tool. Novel mechanisms were needed to actuate and deploy functional tips to the surgical site from their storage locations. Methods: Functional Decomposition was used to determine problems with the current minimally invasive surgery (MIS) paradigm. Axiomatic Design was used to ensure an efficient design. Quality Function Deployment was used to mathematically determine important design criteria. Results: The actuation mechanism transfers squeezing motion from the hand through a gear train to the distal end of the tool where a pin-slot mechanism actuates the tool tip. An ergonomic slider mechanism translates linear thumb motion into rotation of the tool’s shaft through a gear train. A binary ratcheting mechanism is used to lock or unlock the tool with identical motions. Methods for indexing functional tips within the tool and interfacing the tips with a lead screw were designed for a modular tool. Rotary indexing of the tool cartridge is done using a Geneva-type mechanism and cam∕follower to provide positive locking once the tip is in place. Proper alignment of the tool tip with the actuation∕shuttling screw is accomplished using a screw∕wedge assembly. Conclusions: Benefits include multiple functionalities in a single tool, ergonomic benefits of an increased I∕O force scaling, decreased out-of-plane motion required to rotate the tool’s shaft and decreased cognitive effort required to lock and unlock the tool’s jaws.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMechanical Design for Modularity of Laparoscopic Tools
    typeJournal Paper
    journal volume2
    journal issue2
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.2932440
    journal fristpage27508
    identifier eissn1932-619X
    treeJournal of Medical Devices:;2008:;volume( 002 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian