YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design of Nonlinear Springs for Prescribed Load-Displacement Functions

    Source: Journal of Mechanical Design:;2008:;volume( 130 ):;issue: 008::page 81403
    Author:
    Christine Vehar Jutte
    ,
    Sridhar Kota
    DOI: 10.1115/1.2936928
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A nonlinear spring has a defined nonlinear load-displacement function, which is also equivalent to its strain energy absorption rate. Various applications benefit from nonlinear springs, including prosthetics and microelectromechanical system devices. Since each nonlinear spring application requires a unique load-displacement function, spring configurations must be custom designed, and no generalized design methodology exists. In this paper, we present a generalized nonlinear spring synthesis methodology that (i) synthesizes a spring for any prescribed nonlinear load-displacement function and (ii) generates designs having distributed compliance. We introduce a design parametrization that is conducive to geometric nonlinearities, enabling individual beam segments to vary their effective stiffness as the spring deforms. Key features of our method include (i) a branching network of compliant beams used for topology synthesis rather than a ground structure or a continuum model based design parametrization, (ii) curved beams without sudden changes in cross section, offering a more even stress distribution, and (iii) boundary conditions that impose both axial and bending loads on the compliant members and enable large rotations while minimizing bending stresses. To generate nonlinear spring designs, the design parametrization is implemented into a genetic algorithm, and the objective function evaluates spring designs based on the prescribed load-displacement function. The designs are analyzed using nonlinear finite element analysis. Three nonlinear spring examples are presented. Each has a unique prescribed load-displacement function, including a (i) “J-shaped,” (ii) “S-shaped,” and (iii) constant-force function. A fourth example reveals the methodology’s versatility by generating a large displacement linear spring. The results demonstrate the effectiveness of this generalized synthesis methodology for designing nonlinear springs for any given load-displacement function.
    keyword(s): Stress , Design , Displacement , Springs , Force , Topology , Shapes AND Splines ,
    • Download: (1.002Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design of Nonlinear Springs for Prescribed Load-Displacement Functions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/138852
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorChristine Vehar Jutte
    contributor authorSridhar Kota
    date accessioned2017-05-09T00:29:38Z
    date available2017-05-09T00:29:38Z
    date copyrightAugust, 2008
    date issued2008
    identifier issn1050-0472
    identifier otherJMDEDB-27881#081403_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/138852
    description abstractA nonlinear spring has a defined nonlinear load-displacement function, which is also equivalent to its strain energy absorption rate. Various applications benefit from nonlinear springs, including prosthetics and microelectromechanical system devices. Since each nonlinear spring application requires a unique load-displacement function, spring configurations must be custom designed, and no generalized design methodology exists. In this paper, we present a generalized nonlinear spring synthesis methodology that (i) synthesizes a spring for any prescribed nonlinear load-displacement function and (ii) generates designs having distributed compliance. We introduce a design parametrization that is conducive to geometric nonlinearities, enabling individual beam segments to vary their effective stiffness as the spring deforms. Key features of our method include (i) a branching network of compliant beams used for topology synthesis rather than a ground structure or a continuum model based design parametrization, (ii) curved beams without sudden changes in cross section, offering a more even stress distribution, and (iii) boundary conditions that impose both axial and bending loads on the compliant members and enable large rotations while minimizing bending stresses. To generate nonlinear spring designs, the design parametrization is implemented into a genetic algorithm, and the objective function evaluates spring designs based on the prescribed load-displacement function. The designs are analyzed using nonlinear finite element analysis. Three nonlinear spring examples are presented. Each has a unique prescribed load-displacement function, including a (i) “J-shaped,” (ii) “S-shaped,” and (iii) constant-force function. A fourth example reveals the methodology’s versatility by generating a large displacement linear spring. The results demonstrate the effectiveness of this generalized synthesis methodology for designing nonlinear springs for any given load-displacement function.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign of Nonlinear Springs for Prescribed Load-Displacement Functions
    typeJournal Paper
    journal volume130
    journal issue8
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.2936928
    journal fristpage81403
    identifier eissn1528-9001
    keywordsStress
    keywordsDesign
    keywordsDisplacement
    keywordsSprings
    keywordsForce
    keywordsTopology
    keywordsShapes AND Splines
    treeJournal of Mechanical Design:;2008:;volume( 130 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian