YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Selective Ultrasonic Foaming of Polymer for Biomedical Applications

    Source: Journal of Manufacturing Science and Engineering:;2008:;volume( 130 ):;issue: 002::page 21004
    Author:
    Hai Wang
    ,
    Wei Li
    DOI: 10.1115/1.2823078
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Biocompatible polymeric material with well-defined, interconnected porous structure plays an important role in many biomedical applications, such as tissue engineering, controlled drug release, biochemical sensing, and 3D cell culture for drug discovery. In this study, a novel fabrication process for porous polymer is developed using high intensity focused ultrasound. This acoustic method is solvent-free and capable of creating interconnected porous structures with varying topographical features at designed locations. An experimental study on the selective ultrasonic foaming technique is presented in this paper. We investigated the effects of major process variables, including ultrasound power, scanning speed, and gas concentration. Both pore size and interconnectivity of the created porous structures were examined. It was found that the pore size could be controlled with the scanning speed of the ultrasound insonation and that interconnected porous structures could be obtained using a partial saturation procedure. A concentration-dependent gas diffusion model was developed to predict the gas concentration profiles for partially saturated samples. A cell culture study was conducted to examine cell growth behavior in the fabricated porous structures.
    keyword(s): Ultrasound , Polymers , Biomedicine , Ultrasonic effects , Diffusion (Physics) AND Biocompatibility ,
    • Download: (1.398Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Selective Ultrasonic Foaming of Polymer for Biomedical Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/138747
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorHai Wang
    contributor authorWei Li
    date accessioned2017-05-09T00:29:28Z
    date available2017-05-09T00:29:28Z
    date copyrightApril, 2008
    date issued2008
    identifier issn1087-1357
    identifier otherJMSEFK-28027#021004_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/138747
    description abstractBiocompatible polymeric material with well-defined, interconnected porous structure plays an important role in many biomedical applications, such as tissue engineering, controlled drug release, biochemical sensing, and 3D cell culture for drug discovery. In this study, a novel fabrication process for porous polymer is developed using high intensity focused ultrasound. This acoustic method is solvent-free and capable of creating interconnected porous structures with varying topographical features at designed locations. An experimental study on the selective ultrasonic foaming technique is presented in this paper. We investigated the effects of major process variables, including ultrasound power, scanning speed, and gas concentration. Both pore size and interconnectivity of the created porous structures were examined. It was found that the pore size could be controlled with the scanning speed of the ultrasound insonation and that interconnected porous structures could be obtained using a partial saturation procedure. A concentration-dependent gas diffusion model was developed to predict the gas concentration profiles for partially saturated samples. A cell culture study was conducted to examine cell growth behavior in the fabricated porous structures.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSelective Ultrasonic Foaming of Polymer for Biomedical Applications
    typeJournal Paper
    journal volume130
    journal issue2
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.2823078
    journal fristpage21004
    identifier eissn1528-8935
    keywordsUltrasound
    keywordsPolymers
    keywordsBiomedicine
    keywordsUltrasonic effects
    keywordsDiffusion (Physics) AND Biocompatibility
    treeJournal of Manufacturing Science and Engineering:;2008:;volume( 130 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian