YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Liquid Single-Phase Flow in an Array of Micro-Pin-Fins—Part I: Heat Transfer Characteristics

    Source: Journal of Heat Transfer:;2008:;volume( 130 ):;issue: 012::page 122402
    Author:
    Weilin Qu
    ,
    Abel Siu-Ho
    DOI: 10.1115/1.2970080
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This is Paper I of a two-part study concerning thermal and hydrodynamic characteristics of liquid single-phase flow in an array of micro-pin-fins. This paper reports the heat transfer results of the study. An array of 1950 staggered square micro-pin-fins with 200×200 μm2 cross-section by 670 μm height were fabricated into a copper test section. De-ionized water was used as the cooling liquid. Two coolant inlet temperatures of 30°C and 60°C and six maximum mass velocities for each inlet temperature ranging from 183 to 420 kg/m2 s were tested. The corresponding inlet Reynolds number ranged from 45.9 to 179.6. General characteristics of average and local heat transfer were described. Six previous conventional long and intermediate pin-fin correlations and two micro-pin-fin correlations were examined and were found to overpredict the average Nusselt number data. Two new heat transfer correlations were proposed for the average heat transfer based on the present data, in which the average Nusselt number is correlated with the average Reynolds number by power law. Values of the exponent m of the Reynolds number for the two new correlations are fairly close to those for the two previous micro-pin-fin correlations but substantially higher than those for the previous conventional pin-fin correlations, indicating a stronger dependence of the Nusselt number on the Reynolds number in micro-pin-fin arrays. The correlations developed for the average Nusselt number can adequately predict the local Nusselt number data.
    keyword(s): Flow (Dynamics) , Heat transfer , Fins , Water AND Reynolds number ,
    • Download: (1.019Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Liquid Single-Phase Flow in an Array of Micro-Pin-Fins—Part I: Heat Transfer Characteristics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/138405
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorWeilin Qu
    contributor authorAbel Siu-Ho
    date accessioned2017-05-09T00:28:48Z
    date available2017-05-09T00:28:48Z
    date copyrightDecember, 2008
    date issued2008
    identifier issn0022-1481
    identifier otherJHTRAO-27851#122402_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/138405
    description abstractThis is Paper I of a two-part study concerning thermal and hydrodynamic characteristics of liquid single-phase flow in an array of micro-pin-fins. This paper reports the heat transfer results of the study. An array of 1950 staggered square micro-pin-fins with 200×200 μm2 cross-section by 670 μm height were fabricated into a copper test section. De-ionized water was used as the cooling liquid. Two coolant inlet temperatures of 30°C and 60°C and six maximum mass velocities for each inlet temperature ranging from 183 to 420 kg/m2 s were tested. The corresponding inlet Reynolds number ranged from 45.9 to 179.6. General characteristics of average and local heat transfer were described. Six previous conventional long and intermediate pin-fin correlations and two micro-pin-fin correlations were examined and were found to overpredict the average Nusselt number data. Two new heat transfer correlations were proposed for the average heat transfer based on the present data, in which the average Nusselt number is correlated with the average Reynolds number by power law. Values of the exponent m of the Reynolds number for the two new correlations are fairly close to those for the two previous micro-pin-fin correlations but substantially higher than those for the previous conventional pin-fin correlations, indicating a stronger dependence of the Nusselt number on the Reynolds number in micro-pin-fin arrays. The correlations developed for the average Nusselt number can adequately predict the local Nusselt number data.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLiquid Single-Phase Flow in an Array of Micro-Pin-Fins—Part I: Heat Transfer Characteristics
    typeJournal Paper
    journal volume130
    journal issue12
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.2970080
    journal fristpage122402
    identifier eissn1528-8943
    keywordsFlow (Dynamics)
    keywordsHeat transfer
    keywordsFins
    keywordsWater AND Reynolds number
    treeJournal of Heat Transfer:;2008:;volume( 130 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian