YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Wall Inclination Angles on the Onset of Gas Entrainment During Single and Dual Discharges From a Reservoir

    Source: Journal of Fluids Engineering:;2008:;volume( 130 ):;issue: 002::page 21305
    Author:
    M. Ahmed
    DOI: 10.1115/1.2813124
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A theoretical analysis was carried out to predict the influences of wall inclination angles of large reservoirs on the onset of gas entrainment during single and dual discharges from a stratified two-phase region. The findings reveal that when the wall inclination angle differs from zero, along with low values of Froude number, two distinct flow regimes occur: the gas-entrainment and no gas-entrainment regimes. A new criterion has been developed to predict the critical Froude number at the transition from the gas-entrainment to the no-gas-entrainment regime. The critical Froude number is defined as a function of the wall inclination angle for a single discharge. For dual discharge, the critical Froude number is found to be dependent on the wall inclination angle, the separating distance between the centerlines of the two branches, as well as the Froude number of the second branch. Furthermore, four different flow regions are mapped, representing the flow regime, as well as the two-phase flow for each branch. These maps serve to predict the flow regions, mass flow rates, and quality during single and dual two-phase discharges. For the gas-entrainment regime, the predicted values of the critical height at the onset of gas entrainment are compared with the experimental data reported in literatures. Comparisons showed good concurrence between the measured and predicted results. Furthermore, the influence of the wall inclination angle on the flow regions, the predicted critical height, and the location of the gas entrainment are presented and discussed at different values of independent variables.
    keyword(s): Bifurcation AND Flow (Dynamics) ,
    • Download: (1.107Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Wall Inclination Angles on the Onset of Gas Entrainment During Single and Dual Discharges From a Reservoir

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/138286
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorM. Ahmed
    date accessioned2017-05-09T00:28:34Z
    date available2017-05-09T00:28:34Z
    date copyrightFebruary, 2008
    date issued2008
    identifier issn0098-2202
    identifier otherJFEGA4-27294#021305_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/138286
    description abstractA theoretical analysis was carried out to predict the influences of wall inclination angles of large reservoirs on the onset of gas entrainment during single and dual discharges from a stratified two-phase region. The findings reveal that when the wall inclination angle differs from zero, along with low values of Froude number, two distinct flow regimes occur: the gas-entrainment and no gas-entrainment regimes. A new criterion has been developed to predict the critical Froude number at the transition from the gas-entrainment to the no-gas-entrainment regime. The critical Froude number is defined as a function of the wall inclination angle for a single discharge. For dual discharge, the critical Froude number is found to be dependent on the wall inclination angle, the separating distance between the centerlines of the two branches, as well as the Froude number of the second branch. Furthermore, four different flow regions are mapped, representing the flow regime, as well as the two-phase flow for each branch. These maps serve to predict the flow regions, mass flow rates, and quality during single and dual two-phase discharges. For the gas-entrainment regime, the predicted values of the critical height at the onset of gas entrainment are compared with the experimental data reported in literatures. Comparisons showed good concurrence between the measured and predicted results. Furthermore, the influence of the wall inclination angle on the flow regions, the predicted critical height, and the location of the gas entrainment are presented and discussed at different values of independent variables.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInfluence of Wall Inclination Angles on the Onset of Gas Entrainment During Single and Dual Discharges From a Reservoir
    typeJournal Paper
    journal volume130
    journal issue2
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.2813124
    journal fristpage21305
    identifier eissn1528-901X
    keywordsBifurcation AND Flow (Dynamics)
    treeJournal of Fluids Engineering:;2008:;volume( 130 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian