YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Alternate Scales for Turbulent Boundary Layer on Transitional Rough Walls: Universal Log Laws

    Source: Journal of Fluids Engineering:;2008:;volume( 130 ):;issue: 004::page 41202
    Author:
    Noor Afzal
    DOI: 10.1115/1.2844583
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The present work deals with four new alternate transitional surface roughness scales for description of the turbulent boundary layer. The nondimensional roughness scale ϕ is associated with the transitional roughness wall inner variable ζ=Z+∕ϕ, the roughness friction Reynolds number Rϕ=Rτ∕ϕ, and the roughness Reynolds number Reϕ=Re∕ϕ. The two layer theory for turbulent boundary layers in the variables, mentioned above, is presented by method of matched asymptotic expansions for large Reynolds numbers. The matching in the overlap region is carried out by the Izakson–Millikan–Kolmogorov hypothesis, which gives the velocity profiles and skin friction universal log laws, explicitly independent of surface roughness, having the same constants as the smooth wall case. In these alternate variables, just above the wall roughness level, the mean velocity and Reynolds stresses are universal and do not depend on surface roughness. The extensive experimental data provide very good support to our universal relations. There is no universality of scalings in traditional variables and different expressions are needed for inflectional type roughness, monotonic Colebrook–Moody roughness, k-type roughness, d-type roughness, etc. In traditional variables, the velocity profile and skin friction predictions for the inflectional roughness, k-type roughness, and d-type roughness are supported well by the extensive experimental data. The pressure gradient effect from the matching conditions in the overlap region leads to the universal composite laws, which for weaker pressure gradients yields log laws and for strong adverse pressure gradients provides the half-power laws for universal velocity profiles and in traditional variables the additive terms in the two situations depend on the wall roughness.
    • Download: (2.220Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Alternate Scales for Turbulent Boundary Layer on Transitional Rough Walls: Universal Log Laws

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/138251
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorNoor Afzal
    date accessioned2017-05-09T00:28:30Z
    date available2017-05-09T00:28:30Z
    date copyrightApril, 2008
    date issued2008
    identifier issn0098-2202
    identifier otherJFEGA4-27307#041202_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/138251
    description abstractThe present work deals with four new alternate transitional surface roughness scales for description of the turbulent boundary layer. The nondimensional roughness scale ϕ is associated with the transitional roughness wall inner variable ζ=Z+∕ϕ, the roughness friction Reynolds number Rϕ=Rτ∕ϕ, and the roughness Reynolds number Reϕ=Re∕ϕ. The two layer theory for turbulent boundary layers in the variables, mentioned above, is presented by method of matched asymptotic expansions for large Reynolds numbers. The matching in the overlap region is carried out by the Izakson–Millikan–Kolmogorov hypothesis, which gives the velocity profiles and skin friction universal log laws, explicitly independent of surface roughness, having the same constants as the smooth wall case. In these alternate variables, just above the wall roughness level, the mean velocity and Reynolds stresses are universal and do not depend on surface roughness. The extensive experimental data provide very good support to our universal relations. There is no universality of scalings in traditional variables and different expressions are needed for inflectional type roughness, monotonic Colebrook–Moody roughness, k-type roughness, d-type roughness, etc. In traditional variables, the velocity profile and skin friction predictions for the inflectional roughness, k-type roughness, and d-type roughness are supported well by the extensive experimental data. The pressure gradient effect from the matching conditions in the overlap region leads to the universal composite laws, which for weaker pressure gradients yields log laws and for strong adverse pressure gradients provides the half-power laws for universal velocity profiles and in traditional variables the additive terms in the two situations depend on the wall roughness.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAlternate Scales for Turbulent Boundary Layer on Transitional Rough Walls: Universal Log Laws
    typeJournal Paper
    journal volume130
    journal issue4
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.2844583
    journal fristpage41202
    identifier eissn1528-901X
    treeJournal of Fluids Engineering:;2008:;volume( 130 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian