YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Spectral Method for Describing the Response of a Parametrically Excited System Under External Random Excitation

    Source: Journal of Computational and Nonlinear Dynamics:;2008:;volume( 003 ):;issue: 001::page 11008
    Author:
    L. Bachelet
    ,
    J. Perret-Liaudet
    ,
    N. Driot
    DOI: 10.1115/1.2815333
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper describes an original approach for computing the stationary response of linear periodic time variant MDOF systems subjected to stationary stochastic external excitation. The proposed method is derived in the frequency domain, is purely numerical, and provides the explicit power spectral density (PSD) of the response. Its implementation first requires expressing the PSD response as a function of the bilinear Fourier transform of the so-called bitemporal impulse response. Then, the spectral method is used to compute the bispectrum function. The efficiency of this spectral process is demonstrated by comparison with Monte Carlo simulations on three parametrical systems. The computational time required and the accuracy are very satisfactory.
    keyword(s): Stability , Spectra (Spectroscopy) , Simulation , Spectral energy distribution , Engineering simulation , Computation , Equations , Fourier transforms , Random excitation , Stiffness , Impulse (Physics) , Damping , Stochastic processes , Equations of motion AND Density ,
    • Download: (774.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Spectral Method for Describing the Response of a Parametrically Excited System Under External Random Excitation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137581
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorL. Bachelet
    contributor authorJ. Perret-Liaudet
    contributor authorN. Driot
    date accessioned2017-05-09T00:27:13Z
    date available2017-05-09T00:27:13Z
    date copyrightJanuary, 2008
    date issued2008
    identifier issn1555-1415
    identifier otherJCNDDM-25643#011008_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137581
    description abstractThis paper describes an original approach for computing the stationary response of linear periodic time variant MDOF systems subjected to stationary stochastic external excitation. The proposed method is derived in the frequency domain, is purely numerical, and provides the explicit power spectral density (PSD) of the response. Its implementation first requires expressing the PSD response as a function of the bilinear Fourier transform of the so-called bitemporal impulse response. Then, the spectral method is used to compute the bispectrum function. The efficiency of this spectral process is demonstrated by comparison with Monte Carlo simulations on three parametrical systems. The computational time required and the accuracy are very satisfactory.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Spectral Method for Describing the Response of a Parametrically Excited System Under External Random Excitation
    typeJournal Paper
    journal volume3
    journal issue1
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.2815333
    journal fristpage11008
    identifier eissn1555-1423
    keywordsStability
    keywordsSpectra (Spectroscopy)
    keywordsSimulation
    keywordsSpectral energy distribution
    keywordsEngineering simulation
    keywordsComputation
    keywordsEquations
    keywordsFourier transforms
    keywordsRandom excitation
    keywordsStiffness
    keywordsImpulse (Physics)
    keywordsDamping
    keywordsStochastic processes
    keywordsEquations of motion AND Density
    treeJournal of Computational and Nonlinear Dynamics:;2008:;volume( 003 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian