YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Structural Model of the Venous Wall Considering Elastin Anisotropy

    Source: Journal of Biomechanical Engineering:;2008:;volume( 130 ):;issue: 003::page 31017
    Author:
    Rana Rezakhaniha
    ,
    Nikos Stergiopulos
    DOI: 10.1115/1.2907749
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The three-dimensional biomechanical behavior of the vascular wall is best described by means of strain energy functions. Significant effort has been devoted lately in the development of structure-based models of the vascular wall, which account for the individual contribution of each major structural component (elastin, collagen, and vascular smooth muscle). However, none of the currently proposed structural models succeeded in simultaneously and accurately describing both the pressure-radius and pressure-longitudinal force curves. We have hypothesized that shortcomings of the current models are, in part, due to unaccounted anisotropic properties of elastin. We extended our previously developed biomechanical model to account for elastin anisotropy. The experimental data were obtained from inflation-extension tests on facial veins of five young white New Zealand rabbits. Tests have been carried out under a fully relaxed state of smooth muscle cells for longitudinal stretch ratios ranging from 100% to 130% of the in vivo length. The experimental data (pressure-radius, pressure-force, and zero-stress-state geometries) provided a complete biaxial mechanical characterization of rabbit facial vein and served as the basis for validating the applicability and accuracy of the new biomechanical model of the venous wall. When only the pressure-radius curves were fitted, both the anisotropic and the isotropic models gave excellent results. However, when both pressure-radius and pressure-force curves are simultaneously fitted, the model with isotropic elastin shows an average weighted residual sum of squares of 8.94 and 23.9 in the outer radius and axial force, respectively, as compared to averages of 6.07 and 4.00, when anisotropic elastin is considered. Both the Alkaike information criterion and Schwartz criterion show that the model with the anisotropic elastin is more successful in predicting the data for a wide range of longitudinal stretch ratios. We conclude that anisotropic description of elastin is required for a full 3D characterization of the biomechanics of the venous wall.
    keyword(s): Force , Pressure , Fibers , Stress , Anisotropy , Inflationary universe , Biological tissues , Vessels , Biomechanics , Muscle AND Functions ,
    • Download: (611.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Structural Model of the Venous Wall Considering Elastin Anisotropy

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137469
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorRana Rezakhaniha
    contributor authorNikos Stergiopulos
    date accessioned2017-05-09T00:27:01Z
    date available2017-05-09T00:27:01Z
    date copyrightJune, 2008
    date issued2008
    identifier issn0148-0731
    identifier otherJBENDY-26808#031017_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137469
    description abstractThe three-dimensional biomechanical behavior of the vascular wall is best described by means of strain energy functions. Significant effort has been devoted lately in the development of structure-based models of the vascular wall, which account for the individual contribution of each major structural component (elastin, collagen, and vascular smooth muscle). However, none of the currently proposed structural models succeeded in simultaneously and accurately describing both the pressure-radius and pressure-longitudinal force curves. We have hypothesized that shortcomings of the current models are, in part, due to unaccounted anisotropic properties of elastin. We extended our previously developed biomechanical model to account for elastin anisotropy. The experimental data were obtained from inflation-extension tests on facial veins of five young white New Zealand rabbits. Tests have been carried out under a fully relaxed state of smooth muscle cells for longitudinal stretch ratios ranging from 100% to 130% of the in vivo length. The experimental data (pressure-radius, pressure-force, and zero-stress-state geometries) provided a complete biaxial mechanical characterization of rabbit facial vein and served as the basis for validating the applicability and accuracy of the new biomechanical model of the venous wall. When only the pressure-radius curves were fitted, both the anisotropic and the isotropic models gave excellent results. However, when both pressure-radius and pressure-force curves are simultaneously fitted, the model with isotropic elastin shows an average weighted residual sum of squares of 8.94 and 23.9 in the outer radius and axial force, respectively, as compared to averages of 6.07 and 4.00, when anisotropic elastin is considered. Both the Alkaike information criterion and Schwartz criterion show that the model with the anisotropic elastin is more successful in predicting the data for a wide range of longitudinal stretch ratios. We conclude that anisotropic description of elastin is required for a full 3D characterization of the biomechanics of the venous wall.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Structural Model of the Venous Wall Considering Elastin Anisotropy
    typeJournal Paper
    journal volume130
    journal issue3
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.2907749
    journal fristpage31017
    identifier eissn1528-8951
    keywordsForce
    keywordsPressure
    keywordsFibers
    keywordsStress
    keywordsAnisotropy
    keywordsInflationary universe
    keywordsBiological tissues
    keywordsVessels
    keywordsBiomechanics
    keywordsMuscle AND Functions
    treeJournal of Biomechanical Engineering:;2008:;volume( 130 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian