YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Constrained Tibial Vibration in Mice: A Method for Studying the Effects of Vibrational Loading of Bone

    Source: Journal of Biomechanical Engineering:;2008:;volume( 130 ):;issue: 004::page 44502
    Author:
    Blaine A. Christiansen
    ,
    Philip V. Bayly
    ,
    Matthew J. Silva
    DOI: 10.1115/1.2917435
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Vibrational loading can stimulate the formation of new trabecular bone or maintain bone mass. Studies investigating vibrational loading have often used whole-body vibration (WBV) as their loading method. However, WBV has limitations in small animal studies because transmissibility of vibration is dependent on posture. In this study, we propose constrained tibial vibration (CTV) as an experimental method for vibrational loading of mice under controlled conditions. In CTV, the lower leg of an anesthetized mouse is subjected to vertical vibrational loading while supporting a mass. The setup approximates a one degree-of-freedom vibrational system. Accelerometers were used to measure transmissibility of vibration through the lower leg in CTV at frequencies from 20Hzto150Hz. First, the frequency response of transmissibility was quantified in vivo, and dissections were performed to remove one component of the mouse leg (the knee joint, foot, or soft tissue) to investigate the contribution of each component to the frequency response of the intact leg. Next, a finite element (FE) model of a mouse tibia-fibula was used to estimate the deformation of the bone during CTV. Finally, strain gages were used to determine the dependence of bone strain on loading frequency. The in vivo mouse leg in the CTV system had a resonant frequency of 60Hz for ±0.5G vibration (1.0G peak to peak). Removing the foot caused the natural frequency of the system to shift from 60Hzto70Hz, removing the soft tissue caused no change in natural frequency, and removing the knee changed the natural frequency from 60Hzto90Hz. By using the FE model, maximum tensile and compressive strains during CTV were estimated to be on the cranial-medial and caudolateral surfaces of the tibia, respectively, and the peak transmissibility and peak cortical strain occurred at the same frequency. Strain gage data confirmed the relationship between peak transmissibility and peak bone strain indicated by the FE model, and showed that the maximum cyclic tibial strain during CTV of the intact leg was 330±82με and occurred at 60–70Hz. This study presents a comprehensive mechanical analysis of CTV, a loading method for studying vibrational loading under controlled conditions. This model will be used in future in vivo studies and will potentially become an important tool for understanding the response of bone to vibrational loading.
    keyword(s): Bone , Vibration , Strain gages , Frequency response , Knee , Finite element model , Deformation AND Finite element analysis ,
    • Download: (601.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Constrained Tibial Vibration in Mice: A Method for Studying the Effects of Vibrational Loading of Bone

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137447
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorBlaine A. Christiansen
    contributor authorPhilip V. Bayly
    contributor authorMatthew J. Silva
    date accessioned2017-05-09T00:26:59Z
    date available2017-05-09T00:26:59Z
    date copyrightAugust, 2008
    date issued2008
    identifier issn0148-0731
    identifier otherJBENDY-26817#044502_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137447
    description abstractVibrational loading can stimulate the formation of new trabecular bone or maintain bone mass. Studies investigating vibrational loading have often used whole-body vibration (WBV) as their loading method. However, WBV has limitations in small animal studies because transmissibility of vibration is dependent on posture. In this study, we propose constrained tibial vibration (CTV) as an experimental method for vibrational loading of mice under controlled conditions. In CTV, the lower leg of an anesthetized mouse is subjected to vertical vibrational loading while supporting a mass. The setup approximates a one degree-of-freedom vibrational system. Accelerometers were used to measure transmissibility of vibration through the lower leg in CTV at frequencies from 20Hzto150Hz. First, the frequency response of transmissibility was quantified in vivo, and dissections were performed to remove one component of the mouse leg (the knee joint, foot, or soft tissue) to investigate the contribution of each component to the frequency response of the intact leg. Next, a finite element (FE) model of a mouse tibia-fibula was used to estimate the deformation of the bone during CTV. Finally, strain gages were used to determine the dependence of bone strain on loading frequency. The in vivo mouse leg in the CTV system had a resonant frequency of 60Hz for ±0.5G vibration (1.0G peak to peak). Removing the foot caused the natural frequency of the system to shift from 60Hzto70Hz, removing the soft tissue caused no change in natural frequency, and removing the knee changed the natural frequency from 60Hzto90Hz. By using the FE model, maximum tensile and compressive strains during CTV were estimated to be on the cranial-medial and caudolateral surfaces of the tibia, respectively, and the peak transmissibility and peak cortical strain occurred at the same frequency. Strain gage data confirmed the relationship between peak transmissibility and peak bone strain indicated by the FE model, and showed that the maximum cyclic tibial strain during CTV of the intact leg was 330±82με and occurred at 60–70Hz. This study presents a comprehensive mechanical analysis of CTV, a loading method for studying vibrational loading under controlled conditions. This model will be used in future in vivo studies and will potentially become an important tool for understanding the response of bone to vibrational loading.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleConstrained Tibial Vibration in Mice: A Method for Studying the Effects of Vibrational Loading of Bone
    typeJournal Paper
    journal volume130
    journal issue4
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.2917435
    journal fristpage44502
    identifier eissn1528-8951
    keywordsBone
    keywordsVibration
    keywordsStrain gages
    keywordsFrequency response
    keywordsKnee
    keywordsFinite element model
    keywordsDeformation AND Finite element analysis
    treeJournal of Biomechanical Engineering:;2008:;volume( 130 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian