YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On a Novel Annular Sector Cascade Technique

    Source: Journal of Turbomachinery:;2007:;volume( 129 ):;issue: 001::page 175
    Author:
    T. Povey
    ,
    T. V. Jones
    ,
    M. L. Oldfield
    DOI: 10.1115/1.2372766
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An advanced technique for establishing pressure boundary conditions in annular sector cascade experiments has been developed. This novel technique represents an improvement over previous methods and provides the first means by which annular sector boundary conditions that are representative of those which develop in an annular cascade can be established with a high degree of satisfaction. The technique will enable cascade designers to exploit the obvious advantages of annular sector cascade testing: the reduced cost of both facility manufacture and facility operation and the use of engine parts in place of two-dimensional counterparts. By employing an annular sector of deswirl vanes downstream of the annular sector of test vanes, the radial pressure gradient established in the swirling flow downstream of the test vanes is not disturbed. The deswirl vane exit flow—which has zero swirl velocity—can be exhausted without unsteadiness, and without the risk of separation, into a plenum at constant pressure. The pressure ratio across the annular sector of test vanes can be tuned by adjusting the throat area at the deswirl vane exit plane. Flow conditioning systems which utilize the Oxford deswirl vane technology have previously been used to set pressure boundary conditions downstream of fully annular cascades in both model and engine scale (the Isentropic Light Piston Facility at Farnborough) experimental research facilities (, , , , and , 2001, Proceedings of the ImechE Advances in Fluid Machinery Design Seminar, London, June 13; , , , and , 2003, Advances of CFD in Fluid Machinery Design, ImechE Professional Engineering, London, pp. 65–94). The deswirl vane is particularly suited to the control of highly whirling transonic flows. It has been demonstrated by direct comparison of aerodynamic measurements from fully annular and annular sector experiments that the use of a deswirl vane sector for flow conditioning at the exit of an annular sector cascade represents an attractive novel solution to the boundary condition problem. The annular sector technique is now described.
    • Download: (850.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On a Novel Annular Sector Cascade Technique

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137073
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorT. Povey
    contributor authorT. V. Jones
    contributor authorM. L. Oldfield
    date accessioned2017-05-09T00:26:15Z
    date available2017-05-09T00:26:15Z
    date copyrightJanuary, 2007
    date issued2007
    identifier issn0889-504X
    identifier otherJOTUEI-28734#175_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137073
    description abstractAn advanced technique for establishing pressure boundary conditions in annular sector cascade experiments has been developed. This novel technique represents an improvement over previous methods and provides the first means by which annular sector boundary conditions that are representative of those which develop in an annular cascade can be established with a high degree of satisfaction. The technique will enable cascade designers to exploit the obvious advantages of annular sector cascade testing: the reduced cost of both facility manufacture and facility operation and the use of engine parts in place of two-dimensional counterparts. By employing an annular sector of deswirl vanes downstream of the annular sector of test vanes, the radial pressure gradient established in the swirling flow downstream of the test vanes is not disturbed. The deswirl vane exit flow—which has zero swirl velocity—can be exhausted without unsteadiness, and without the risk of separation, into a plenum at constant pressure. The pressure ratio across the annular sector of test vanes can be tuned by adjusting the throat area at the deswirl vane exit plane. Flow conditioning systems which utilize the Oxford deswirl vane technology have previously been used to set pressure boundary conditions downstream of fully annular cascades in both model and engine scale (the Isentropic Light Piston Facility at Farnborough) experimental research facilities (, , , , and , 2001, Proceedings of the ImechE Advances in Fluid Machinery Design Seminar, London, June 13; , , , and , 2003, Advances of CFD in Fluid Machinery Design, ImechE Professional Engineering, London, pp. 65–94). The deswirl vane is particularly suited to the control of highly whirling transonic flows. It has been demonstrated by direct comparison of aerodynamic measurements from fully annular and annular sector experiments that the use of a deswirl vane sector for flow conditioning at the exit of an annular sector cascade represents an attractive novel solution to the boundary condition problem. The annular sector technique is now described.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn a Novel Annular Sector Cascade Technique
    typeJournal Paper
    journal volume129
    journal issue1
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.2372766
    journal fristpage175
    journal lastpage183
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2007:;volume( 129 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian