YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Tip and Pressure Side Coolant Injection on Heat Transfer Distributions for a Plane and Recessed Tip

    Source: Journal of Turbomachinery:;2007:;volume( 129 ):;issue: 001::page 151
    Author:
    Hasan Nasir
    ,
    Ronald S. Bunker
    ,
    Srinath V. Ekkad
    DOI: 10.1115/1.2366540
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The present study investigates the effects of coolant injection on adiabatic film effectiveness and heat transfer coefficients from a plane and recessed tip of a high pressure turbine first stage rotor blade. Three cases where coolant is injected from (a) five orthogonal holes located along the camber line, (b) seven angled holes located near the blade tip along the pressure side, and (c) combination cases when coolant is injected from both tip and pressure side holes were studied. The pressure ratio (inlet total pressure to exit static pressure for the cascade) across the blade row was 1.2, and the experiments were run in a blow-down test rig with a four-blade linear cascade. The Reynolds number based on cascade exit velocity and axial chord length was 8.61×105 and the inlet and exit Mach numbers were 0.16 and 0.55, respectively. A transient infrared technique was used to measure adiabatic film effectiveness and heat transfer coefficient simultaneously for three blowing ratios of 1.0, 2.0, and 3.0. For all the cases, gap-to-blade span ratio of 1% was used. The depth-to-blade span ratio of 0.0416 was used for the recessed tip. Pressure measurements on the shroud were also taken to characterize the leakage flow and understand the heat transfer distributions. For tip injection, when blowing ratio increases from 1.0 to 2.0, film effectiveness increases for both plane and recessed tip and heat transfer coefficient decreases for both plane and recessed tip. At blowing ratio 3.0, lift-off is observed for both cases. In case of pressure side coolant injection and for plane tip, lift-off is observed at blowing ratio 2.0 and reattachments of jets are observed at blowing ratio 3.0. But, almost no effectiveness is observed for squealer tip at all blowing ratios with pressure side injection with reduced heat transfer coefficient along the pressure side. For combination case, very high effectiveness is observed at blowing ratio 3.0 for both plane and recessed blade tip. It appears that for this high blowing ratio, coolant jets from the tip hit the shroud first and then reattach back onto the blade tip with very high heat transfer coefficients for both plane and recessed blade tip.
    • Download: (1.559Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Tip and Pressure Side Coolant Injection on Heat Transfer Distributions for a Plane and Recessed Tip

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137071
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorHasan Nasir
    contributor authorRonald S. Bunker
    contributor authorSrinath V. Ekkad
    date accessioned2017-05-09T00:26:14Z
    date available2017-05-09T00:26:14Z
    date copyrightJanuary, 2007
    date issued2007
    identifier issn0889-504X
    identifier otherJOTUEI-28734#151_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137071
    description abstractThe present study investigates the effects of coolant injection on adiabatic film effectiveness and heat transfer coefficients from a plane and recessed tip of a high pressure turbine first stage rotor blade. Three cases where coolant is injected from (a) five orthogonal holes located along the camber line, (b) seven angled holes located near the blade tip along the pressure side, and (c) combination cases when coolant is injected from both tip and pressure side holes were studied. The pressure ratio (inlet total pressure to exit static pressure for the cascade) across the blade row was 1.2, and the experiments were run in a blow-down test rig with a four-blade linear cascade. The Reynolds number based on cascade exit velocity and axial chord length was 8.61×105 and the inlet and exit Mach numbers were 0.16 and 0.55, respectively. A transient infrared technique was used to measure adiabatic film effectiveness and heat transfer coefficient simultaneously for three blowing ratios of 1.0, 2.0, and 3.0. For all the cases, gap-to-blade span ratio of 1% was used. The depth-to-blade span ratio of 0.0416 was used for the recessed tip. Pressure measurements on the shroud were also taken to characterize the leakage flow and understand the heat transfer distributions. For tip injection, when blowing ratio increases from 1.0 to 2.0, film effectiveness increases for both plane and recessed tip and heat transfer coefficient decreases for both plane and recessed tip. At blowing ratio 3.0, lift-off is observed for both cases. In case of pressure side coolant injection and for plane tip, lift-off is observed at blowing ratio 2.0 and reattachments of jets are observed at blowing ratio 3.0. But, almost no effectiveness is observed for squealer tip at all blowing ratios with pressure side injection with reduced heat transfer coefficient along the pressure side. For combination case, very high effectiveness is observed at blowing ratio 3.0 for both plane and recessed blade tip. It appears that for this high blowing ratio, coolant jets from the tip hit the shroud first and then reattach back onto the blade tip with very high heat transfer coefficients for both plane and recessed blade tip.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Tip and Pressure Side Coolant Injection on Heat Transfer Distributions for a Plane and Recessed Tip
    typeJournal Paper
    journal volume129
    journal issue1
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.2366540
    journal fristpage151
    journal lastpage163
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2007:;volume( 129 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian