YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Work Processes on the Casing Heat Transfer of a Transonic Turbine

    Source: Journal of Turbomachinery:;2007:;volume( 129 ):;issue: 001::page 84
    Author:
    Steven J. Thorpe
    ,
    Robert J. Miller
    ,
    Shin Yoshino
    ,
    Roger W. Ainsworth
    ,
    Neil W. Harvey
    DOI: 10.1115/1.2372772
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper considers the effect of the rotor tip on the casing heat load of a transonic axial flow turbine. The aim of the research is to understand the dominant causes of casing heat transfer. Experimental measurements were conducted at engine-representative Mach number, Reynolds number, and stage inlet to casing wall temperature ratio. Time-resolved heat-transfer coefficient and gas recovery temperature on the casing were measured using an array of heat-transfer gauges. Time-resolved static pressure on the casing wall was measured using Kulite pressure transducers. Time-resolved numerical simulations were undertaken to aid understanding of the mechanism responsible for casing heat load. The results show that between 35% and 60% axial chord the rotor tip-leakage flow is responsible for more than 50% of casing heat transfer. The effects of both gas recovery temperature and heat transfer coefficient were investigated separately and it is shown that an increased stagnation temperature in the rotor tip gap dominates casing heat transfer. In the tip gap the stagnation temperature is shown to rise above that found at stage inlet (combustor exit) by as much as 35% of stage total temperature drop. The rise in stagnation temperature is caused by an isentropic work input to the tip-leakage fluid by the rotor. The size of this mechanism is investigated by computationally tracking fluid path lines through the rotor tip gap to understand the unsteady work processes that occur.
    • Download: (1.055Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Work Processes on the Casing Heat Transfer of a Transonic Turbine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137063
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorSteven J. Thorpe
    contributor authorRobert J. Miller
    contributor authorShin Yoshino
    contributor authorRoger W. Ainsworth
    contributor authorNeil W. Harvey
    date accessioned2017-05-09T00:26:14Z
    date available2017-05-09T00:26:14Z
    date copyrightJanuary, 2007
    date issued2007
    identifier issn0889-504X
    identifier otherJOTUEI-28734#84_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137063
    description abstractThis paper considers the effect of the rotor tip on the casing heat load of a transonic axial flow turbine. The aim of the research is to understand the dominant causes of casing heat transfer. Experimental measurements were conducted at engine-representative Mach number, Reynolds number, and stage inlet to casing wall temperature ratio. Time-resolved heat-transfer coefficient and gas recovery temperature on the casing were measured using an array of heat-transfer gauges. Time-resolved static pressure on the casing wall was measured using Kulite pressure transducers. Time-resolved numerical simulations were undertaken to aid understanding of the mechanism responsible for casing heat load. The results show that between 35% and 60% axial chord the rotor tip-leakage flow is responsible for more than 50% of casing heat transfer. The effects of both gas recovery temperature and heat transfer coefficient were investigated separately and it is shown that an increased stagnation temperature in the rotor tip gap dominates casing heat transfer. In the tip gap the stagnation temperature is shown to rise above that found at stage inlet (combustor exit) by as much as 35% of stage total temperature drop. The rise in stagnation temperature is caused by an isentropic work input to the tip-leakage fluid by the rotor. The size of this mechanism is investigated by computationally tracking fluid path lines through the rotor tip gap to understand the unsteady work processes that occur.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Effect of Work Processes on the Casing Heat Transfer of a Transonic Turbine
    typeJournal Paper
    journal volume129
    journal issue1
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.2372772
    journal fristpage84
    journal lastpage91
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2007:;volume( 129 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian