YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Aeroelastic Stability of Welded-in-Pair Low Pressure Turbine Rotor Blades: A Comparative Study Using Linear Methods

    Source: Journal of Turbomachinery:;2007:;volume( 129 ):;issue: 001::page 72
    Author:
    Roque Corral
    ,
    Juan Manuel Gallardo
    ,
    Carlos Vasco
    DOI: 10.1115/1.2366512
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The aerodynamic damping of a modern low pressure turbine bladed-disk with interlock rotor blades is compared for the first time to that obtained when the rotor blades are welded in pairs through the lateral face of the shroud. The damping is computed solving the linearized Reynolds averaged Navier-Stokes equations on a moving grid. First the basics of the stabilizing mechanism of welding the rotor blades in pairs is investigated using two-dimensional analyses and the Panovsky and Kielb method. It is concluded that the stabilizing effect is due to the suppression of unsteady perturbations in one out of the two passages providing for the first time a physical explanation to engine data. Three-dimensional effects are then studied using the actual mode shapes of two bladed disks differing solely in the shroud boundary conditions. It is concluded that the increase in the aerodynamic damping, due to the modification of the mode shapes caused by welding the rotor blades in pairs, is smaller than that due to the overall raise of the reduced frequencies of a bladed disk with an interlock design. The modification of the flutter boundaries due to mistuning effects is assessed using the reduced order model known as the Fundamental Mistuning Model. A novel extension of the critical reduced frequency stability maps accounting for mistuning effects is derived and applied for both, the freestanding and welded-in-pair airfoils. The stabilizing effect of mistuning is clearly seen in these maps. Finally, the effect of mistuning on low-pressure-turbine bladed disks is studied. It is shown that the modification on the stability limit of the interlock bladed disk is negligible, while for the welded-in-pair configuration a 0.15% increase of the damping relative to the critical damping is found. This qualitative difference between both configurations had not been reported before.
    • Download: (1.340Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Aeroelastic Stability of Welded-in-Pair Low Pressure Turbine Rotor Blades: A Comparative Study Using Linear Methods

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137062
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorRoque Corral
    contributor authorJuan Manuel Gallardo
    contributor authorCarlos Vasco
    date accessioned2017-05-09T00:26:14Z
    date available2017-05-09T00:26:14Z
    date copyrightJanuary, 2007
    date issued2007
    identifier issn0889-504X
    identifier otherJOTUEI-28734#72_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137062
    description abstractThe aerodynamic damping of a modern low pressure turbine bladed-disk with interlock rotor blades is compared for the first time to that obtained when the rotor blades are welded in pairs through the lateral face of the shroud. The damping is computed solving the linearized Reynolds averaged Navier-Stokes equations on a moving grid. First the basics of the stabilizing mechanism of welding the rotor blades in pairs is investigated using two-dimensional analyses and the Panovsky and Kielb method. It is concluded that the stabilizing effect is due to the suppression of unsteady perturbations in one out of the two passages providing for the first time a physical explanation to engine data. Three-dimensional effects are then studied using the actual mode shapes of two bladed disks differing solely in the shroud boundary conditions. It is concluded that the increase in the aerodynamic damping, due to the modification of the mode shapes caused by welding the rotor blades in pairs, is smaller than that due to the overall raise of the reduced frequencies of a bladed disk with an interlock design. The modification of the flutter boundaries due to mistuning effects is assessed using the reduced order model known as the Fundamental Mistuning Model. A novel extension of the critical reduced frequency stability maps accounting for mistuning effects is derived and applied for both, the freestanding and welded-in-pair airfoils. The stabilizing effect of mistuning is clearly seen in these maps. Finally, the effect of mistuning on low-pressure-turbine bladed disks is studied. It is shown that the modification on the stability limit of the interlock bladed disk is negligible, while for the welded-in-pair configuration a 0.15% increase of the damping relative to the critical damping is found. This qualitative difference between both configurations had not been reported before.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAeroelastic Stability of Welded-in-Pair Low Pressure Turbine Rotor Blades: A Comparative Study Using Linear Methods
    typeJournal Paper
    journal volume129
    journal issue1
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.2366512
    journal fristpage72
    journal lastpage83
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2007:;volume( 129 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian