YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Movement of Deposited Water on Turbomachinery Rotor Blade Surfaces

    Source: Journal of Turbomachinery:;2007:;volume( 129 ):;issue: 002::page 394
    Author:
    John Williams
    ,
    John B. Young
    DOI: 10.1115/1.2437780
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A theoretical approach for calculating the movement of liquid water following deposition onto a turbomachine rotor blade is described. Such a situation can occur during operation of an aero-engine in rain. The equation of motion of the deposited water is developed on an arbitrarily oriented plane triangular surface facet. By dividing the blade surface into a large number of facets and calculating the water trajectory over each one crossed in turn, the overall trajectory can be constructed. Apart from the centrifugal and Coriolis inertia effects, the forces acting on the water arise from the blade surface friction, and the aerodynamic shear and pressure gradient. Nondimensionalization of the equations of motion provides considerable insight and a detailed study of water flow on a flat rotating plate set at different stagger angles demonstrates the paramount importance of blade surface friction. The extreme cases of low and high blade friction are examined and it is concluded that the latter (which allows considerable mathematical generalization) is the most likely in practice. It is also shown that the aerodynamic shear force, but not the pressure force, may influence the water motion. Calculations of water movement on a low-speed compressor blade and the fan blade of a high bypass ratio aero-engine suggest that in low rotational speed situations most of the deposited water is centrifuged rapidly to the blade tip region.
    • Download: (233.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Movement of Deposited Water on Turbomachinery Rotor Blade Surfaces

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137048
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorJohn Williams
    contributor authorJohn B. Young
    date accessioned2017-05-09T00:26:12Z
    date available2017-05-09T00:26:12Z
    date copyrightApril, 2007
    date issued2007
    identifier issn0889-504X
    identifier otherJOTUEI-28736#394_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137048
    description abstractA theoretical approach for calculating the movement of liquid water following deposition onto a turbomachine rotor blade is described. Such a situation can occur during operation of an aero-engine in rain. The equation of motion of the deposited water is developed on an arbitrarily oriented plane triangular surface facet. By dividing the blade surface into a large number of facets and calculating the water trajectory over each one crossed in turn, the overall trajectory can be constructed. Apart from the centrifugal and Coriolis inertia effects, the forces acting on the water arise from the blade surface friction, and the aerodynamic shear and pressure gradient. Nondimensionalization of the equations of motion provides considerable insight and a detailed study of water flow on a flat rotating plate set at different stagger angles demonstrates the paramount importance of blade surface friction. The extreme cases of low and high blade friction are examined and it is concluded that the latter (which allows considerable mathematical generalization) is the most likely in practice. It is also shown that the aerodynamic shear force, but not the pressure force, may influence the water motion. Calculations of water movement on a low-speed compressor blade and the fan blade of a high bypass ratio aero-engine suggest that in low rotational speed situations most of the deposited water is centrifuged rapidly to the blade tip region.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMovement of Deposited Water on Turbomachinery Rotor Blade Surfaces
    typeJournal Paper
    journal volume129
    journal issue2
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.2437780
    journal fristpage394
    journal lastpage403
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2007:;volume( 129 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian