| contributor author | A. C. Nix | |
| contributor author | T. E. Diller | |
| contributor author | W. F. Ng | |
| date accessioned | 2017-05-09T00:26:08Z | |
| date available | 2017-05-09T00:26:08Z | |
| date copyright | July, 2007 | |
| date issued | 2007 | |
| identifier issn | 0889-504X | |
| identifier other | JOTUEI-28739#542_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/137016 | |
| description abstract | The influence of freestream turbulence representative of the flow downstream of a modern gas turbine combustor and first stage vane on turbine blade heat transfer has been measured and analytically modeled in a linear, transonic turbine cascade. High-intensity, large length-scale freestream turbulence was generated using a passive turbulence-generating grid to simulate the turbulence generated in modern combustors after passing through the first stage vane row. The grid produced freestream turbulence with intensity of approximately 10–12% and an integral length scale of 2cm(Λx∕c=0.15) near the entrance of the cascade passages. Mean heat transfer results with high turbulence showed an increase in heat transfer coefficient over the baseline low turbulence case of approximately 8% on the suction surface of the blade, with increases on the pressure surface of approximately 17%. Time-resolved surface heat transfer and passage velocity measurements demonstrate strong coherence in velocity and heat flux at a frequency correlating with the most energetic eddies in the turbulence flow field (the integral length scale). An analytical model was developed to predict increases in surface heat transfer due to freestream turbulence based on local measurements of turbulent velocity fluctuations and length scale. The model was shown to predict measured increases in heat flux on both blade surfaces in the current data. The model also successfully predicted the increases in heat transfer measured in other work in the literature, encompassing different geometries (flat plate, cylinder, turbine vane, and turbine blade) and boundary layer conditions. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Experimental Measurements and Modeling of the Effects of Large-Scale Freestream Turbulence on Heat Transfer | |
| type | Journal Paper | |
| journal volume | 129 | |
| journal issue | 3 | |
| journal title | Journal of Turbomachinery | |
| identifier doi | 10.1115/1.2515555 | |
| journal fristpage | 542 | |
| journal lastpage | 550 | |
| identifier eissn | 1528-8900 | |
| tree | Journal of Turbomachinery:;2007:;volume( 129 ):;issue: 003 | |
| contenttype | Fulltext | |