YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Predicting Entropy Generation Rates in Transitional Boundary Layers Based on Intermittency

    Source: Journal of Turbomachinery:;2007:;volume( 129 ):;issue: 003::page 512
    Author:
    Kevin P. Nolan
    ,
    Donald M. McEligot
    ,
    Ralph J. Volino
    ,
    Edmond J. Walsh
    DOI: 10.1115/1.2720488
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Prediction of thermodynamic loss in transitional boundary layers is typically based on time-averaged data only. This approach effectively ignores the intermittent nature of the transition region. In this work laminar and turbulent conditionally sampled boundary layer data for zero pressure gradient and accelerating transitional boundary layers have been analyzed to calculate the entropy generation rate in the transition region. By weighting the nondimensional dissipation coefficient for the laminar conditioned data and turbulent conditioned data with the intermittency factor, the entropy generation rate in the transition region can be determined and compared to the time-averaged data and correlations for laminar and turbulent flow. It is demonstrated that this method provides an accurate and detailed picture of the entropy generation rate during transition in contrast with simple time averaging. The data used in this paper have been taken from conditionally sampled boundary layer measurements available in the literature for favorable pressure gradient flows. Based on these measurements, a semi-empirical technique is developed to predict the entropy generation rate in a transitional boundary layer with promising results.
    • Download: (260.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Predicting Entropy Generation Rates in Transitional Boundary Layers Based on Intermittency

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137013
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorKevin P. Nolan
    contributor authorDonald M. McEligot
    contributor authorRalph J. Volino
    contributor authorEdmond J. Walsh
    date accessioned2017-05-09T00:26:08Z
    date available2017-05-09T00:26:08Z
    date copyrightJuly, 2007
    date issued2007
    identifier issn0889-504X
    identifier otherJOTUEI-28739#512_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137013
    description abstractPrediction of thermodynamic loss in transitional boundary layers is typically based on time-averaged data only. This approach effectively ignores the intermittent nature of the transition region. In this work laminar and turbulent conditionally sampled boundary layer data for zero pressure gradient and accelerating transitional boundary layers have been analyzed to calculate the entropy generation rate in the transition region. By weighting the nondimensional dissipation coefficient for the laminar conditioned data and turbulent conditioned data with the intermittency factor, the entropy generation rate in the transition region can be determined and compared to the time-averaged data and correlations for laminar and turbulent flow. It is demonstrated that this method provides an accurate and detailed picture of the entropy generation rate during transition in contrast with simple time averaging. The data used in this paper have been taken from conditionally sampled boundary layer measurements available in the literature for favorable pressure gradient flows. Based on these measurements, a semi-empirical technique is developed to predict the entropy generation rate in a transitional boundary layer with promising results.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePredicting Entropy Generation Rates in Transitional Boundary Layers Based on Intermittency
    typeJournal Paper
    journal volume129
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.2720488
    journal fristpage512
    journal lastpage517
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2007:;volume( 129 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian