YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Approach to Integrated Multi-Disciplinary Turbomachinery Design

    Source: Journal of Turbomachinery:;2007:;volume( 129 ):;issue: 003::page 488
    Author:
    Jerome P. Jarrett
    ,
    William N. Dawes
    ,
    P. John Clarkson
    DOI: 10.1115/1.2472416
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Aeroengines are designed using fractured processes. Complexity has driven the design of such machines to be subdivided by specialism, customer, and function. While this approach has worked well in the past, with component efficiencies, current material performance, and the possibilities presented by scaling existing designs for future needs becoming progressively exhausted, it is necessary to reverse this process of disintegration. Our research addresses this aim. The strategy we use has two symbiotic arms. The first is an open data architecture from which existing disparate design codes all derive their input and to which all send their output. The second is a dynamic design process management system known as “SignPosting.” Both the design codes and parameters are arranged into complementary multiple level hierarchies: fundamental to the successful implementation of our strategy is the robustness of the mechanisms we have developed to ensure consistency in this environment as the design develops over time. One of the key benefits of adopting a hierarchical structure is that it confers not only the ability to use mean-line, throughflow, and fully 3D computational fluid dynamics techniques in the same environment, but also to cross specialism boundaries and to insert mechanical, material, thermal, electrical, and structural codes, enabling exploration of the design space for multi-disciplinary nonlinear responses to design changes and their exploitation. We present results from trials of an early version of the system applied to the redesign of a generic civil aeroengine core compressor. SignPosting has allowed us to examine the hardness of design constraints across disciplines which has shown that it is far more profitable not to strive for even higher aerodynamic performance, but rather to improve the commercial performance by maintaining design and part-speed pressure ratio stability and efficiency while increasing rotor blade creep life by up to 70%.
    • Download: (286.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Approach to Integrated Multi-Disciplinary Turbomachinery Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137009
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorJerome P. Jarrett
    contributor authorWilliam N. Dawes
    contributor authorP. John Clarkson
    date accessioned2017-05-09T00:26:07Z
    date available2017-05-09T00:26:07Z
    date copyrightJuly, 2007
    date issued2007
    identifier issn0889-504X
    identifier otherJOTUEI-28739#488_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137009
    description abstractAeroengines are designed using fractured processes. Complexity has driven the design of such machines to be subdivided by specialism, customer, and function. While this approach has worked well in the past, with component efficiencies, current material performance, and the possibilities presented by scaling existing designs for future needs becoming progressively exhausted, it is necessary to reverse this process of disintegration. Our research addresses this aim. The strategy we use has two symbiotic arms. The first is an open data architecture from which existing disparate design codes all derive their input and to which all send their output. The second is a dynamic design process management system known as “SignPosting.” Both the design codes and parameters are arranged into complementary multiple level hierarchies: fundamental to the successful implementation of our strategy is the robustness of the mechanisms we have developed to ensure consistency in this environment as the design develops over time. One of the key benefits of adopting a hierarchical structure is that it confers not only the ability to use mean-line, throughflow, and fully 3D computational fluid dynamics techniques in the same environment, but also to cross specialism boundaries and to insert mechanical, material, thermal, electrical, and structural codes, enabling exploration of the design space for multi-disciplinary nonlinear responses to design changes and their exploitation. We present results from trials of an early version of the system applied to the redesign of a generic civil aeroengine core compressor. SignPosting has allowed us to examine the hardness of design constraints across disciplines which has shown that it is far more profitable not to strive for even higher aerodynamic performance, but rather to improve the commercial performance by maintaining design and part-speed pressure ratio stability and efficiency while increasing rotor blade creep life by up to 70%.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Approach to Integrated Multi-Disciplinary Turbomachinery Design
    typeJournal Paper
    journal volume129
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.2472416
    journal fristpage488
    journal lastpage494
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2007:;volume( 129 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian