YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Predicting Transition on Concave Surfaces

    Source: Journal of Turbomachinery:;2007:;volume( 129 ):;issue: 004::page 750
    Author:
    Mark W. Johnson
    DOI: 10.1115/1.2720865
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Boundary layers on concave surfaces differ from those on flat plates due to the presence of Taylor-Goertler (T-G) vortices. These vortices cause momentum transfer normal to the blade’s surface and hence result in a more rapid development of the laminar boundary layer and a fuller profile than is typical of a flat plate. Transition of boundary layers on concave surfaces also occurs at a lower Rex than on a flat plate. Concave surface transition correlations have been formulated previously from experimental data, but they are not comprehensive and are based on relatively sparse data. The purpose of the current work was to attempt to model the physics of both the laminar boundary layer development and transition process in order to produce a transition model suitable for concave surface boundary layers. The development of the laminar boundary layer on a concave surface was modeled by considering the profiles at the upwash and downwash locations separately. The profiles of the boundary layers at these two locations were then combined to successfully approximate the spanwise averaged profile. The ratio of the boundary layer thicknesses at the two locations was found to be as great as 50 and this leads to laminar boundary layer shape factors as low as 1.3 and skin friction coefficients up to 12 times the value for a flat plate laminar boundary layer. Boundary layers therefore grow much more rapidly on concave surfaces than on flat plates. The transition model assumed that transition commenced in the upwash location boundary layer at the same transition inception Reθ observed on a flat plate. Transition at the downwash location then results from the growth of turbulent spots from the upwash location rather than through the initiation of spots. The model showed that initially curvature promotes transition because of the thickened upwash boundary layer, but for strong curvature the T-G vortices effectively stabilize the boundary layer and transition then occurs at a higher Reθ than on a flat plate. Results from the transition model were in broad agreement with experimental observations. The current work therefore provides a basis for the modeling of transition on concave surfaces.
    • Download: (161.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Predicting Transition on Concave Surfaces

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/136991
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorMark W. Johnson
    date accessioned2017-05-09T00:26:05Z
    date available2017-05-09T00:26:05Z
    date copyrightOctober, 2007
    date issued2007
    identifier issn0889-504X
    identifier otherJOTUEI-28742#750_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/136991
    description abstractBoundary layers on concave surfaces differ from those on flat plates due to the presence of Taylor-Goertler (T-G) vortices. These vortices cause momentum transfer normal to the blade’s surface and hence result in a more rapid development of the laminar boundary layer and a fuller profile than is typical of a flat plate. Transition of boundary layers on concave surfaces also occurs at a lower Rex than on a flat plate. Concave surface transition correlations have been formulated previously from experimental data, but they are not comprehensive and are based on relatively sparse data. The purpose of the current work was to attempt to model the physics of both the laminar boundary layer development and transition process in order to produce a transition model suitable for concave surface boundary layers. The development of the laminar boundary layer on a concave surface was modeled by considering the profiles at the upwash and downwash locations separately. The profiles of the boundary layers at these two locations were then combined to successfully approximate the spanwise averaged profile. The ratio of the boundary layer thicknesses at the two locations was found to be as great as 50 and this leads to laminar boundary layer shape factors as low as 1.3 and skin friction coefficients up to 12 times the value for a flat plate laminar boundary layer. Boundary layers therefore grow much more rapidly on concave surfaces than on flat plates. The transition model assumed that transition commenced in the upwash location boundary layer at the same transition inception Reθ observed on a flat plate. Transition at the downwash location then results from the growth of turbulent spots from the upwash location rather than through the initiation of spots. The model showed that initially curvature promotes transition because of the thickened upwash boundary layer, but for strong curvature the T-G vortices effectively stabilize the boundary layer and transition then occurs at a higher Reθ than on a flat plate. Results from the transition model were in broad agreement with experimental observations. The current work therefore provides a basis for the modeling of transition on concave surfaces.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePredicting Transition on Concave Surfaces
    typeJournal Paper
    journal volume129
    journal issue4
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.2720865
    journal fristpage750
    journal lastpage755
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2007:;volume( 129 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian