YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Molecularly Thin Liquid Lubricant Films on Slider Hysteresis Behavior in Hard Disk Drives

    Source: Journal of Tribology:;2007:;volume( 129 ):;issue: 003::page 579
    Author:
    Norio Tagawa
    ,
    Atsunobu Mori
    ,
    Ken Senoue
    DOI: 10.1115/1.2736448
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In order to achieve a magnetic recording density of 1Tb∕in2, the spacing is expected to be less than 2–3nm. However, a critical issue in achieving such an ultralow spacing is the dynamic instability of the head disk interface (HDI). That is, the experimentally observed hysteresis of fly sliders. The phenomenon of slider hysteresis has two features: slider touchdown and slider takeoff. The goal of this research is to experimentally clarify the effects of the lubricant bonded ratio as well as the lubricant film thickness on slider hysteresis behavior in detail. It also aims to determine the contributing factors. In this study, the difference in the touchdown and takeoff velocities was monitored by varying the lubricant bonded ratio and lubricant film thickness of the disks. Furthermore, the correlation between the observed phenomenon and the variation in the experimental parameters was investigated. The results showed that the touchdown velocities were almost independent of the lubricant bonded ratio, while the takeoff velocities were greater for a lubricant with a higher bonded ratio. These results were obtained for a constant lubricant film thickness of around one monolayer. Therefore, the slider hysteresis was greater for a lubricant with a higher bonded ratio. With regard to the effect of lubricant film thickness, it was observed that the touchdown and takeoff velocities were greater for thinner lubricants. These results for the effect of lubricant film thickness are very similar to those obtained by , , and (2005, ASME J. Tribol., 127(3), pp. 530–536). However, the slider hysteresis was greater for thicker lubricants. Considering these experimental results as well as the experimental data for the effect of the surface roughness of a disk on the slider hysteresis obtained by ( (2006, J. Appl. Phys. , 99(8), pp. 08N104-1–08N104-3), it was suggested that the variation in the touchdown velocity is due to a variation in the intermolecular forces. Furthermore, it was suggested that the variation in the takeoff velocity is caused by a variation in the friction forces between the slider and disk surface. This occurs because the takeoff velocity was greater for a lubricant with a higher bonded ratio or a thinner lubricant, which only has a small fraction of free mobile lubricant. The results predicted by the simulations are consistent with those observed experimentally. In addition, a design guideline for next-generation HDI, with small touchdown and takeoff velocities, resulting in small slider hysteresis, is discussed in detail in this paper.
    keyword(s): Lubricants , Disks , Film thickness , Force AND Intermolecular forces ,
    • Download: (1.204Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Molecularly Thin Liquid Lubricant Films on Slider Hysteresis Behavior in Hard Disk Drives

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/136902
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorNorio Tagawa
    contributor authorAtsunobu Mori
    contributor authorKen Senoue
    date accessioned2017-05-09T00:25:54Z
    date available2017-05-09T00:25:54Z
    date copyrightJuly, 2007
    date issued2007
    identifier issn0742-4787
    identifier otherJOTRE9-28751#579_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/136902
    description abstractIn order to achieve a magnetic recording density of 1Tb∕in2, the spacing is expected to be less than 2–3nm. However, a critical issue in achieving such an ultralow spacing is the dynamic instability of the head disk interface (HDI). That is, the experimentally observed hysteresis of fly sliders. The phenomenon of slider hysteresis has two features: slider touchdown and slider takeoff. The goal of this research is to experimentally clarify the effects of the lubricant bonded ratio as well as the lubricant film thickness on slider hysteresis behavior in detail. It also aims to determine the contributing factors. In this study, the difference in the touchdown and takeoff velocities was monitored by varying the lubricant bonded ratio and lubricant film thickness of the disks. Furthermore, the correlation between the observed phenomenon and the variation in the experimental parameters was investigated. The results showed that the touchdown velocities were almost independent of the lubricant bonded ratio, while the takeoff velocities were greater for a lubricant with a higher bonded ratio. These results were obtained for a constant lubricant film thickness of around one monolayer. Therefore, the slider hysteresis was greater for a lubricant with a higher bonded ratio. With regard to the effect of lubricant film thickness, it was observed that the touchdown and takeoff velocities were greater for thinner lubricants. These results for the effect of lubricant film thickness are very similar to those obtained by , , and (2005, ASME J. Tribol., 127(3), pp. 530–536). However, the slider hysteresis was greater for thicker lubricants. Considering these experimental results as well as the experimental data for the effect of the surface roughness of a disk on the slider hysteresis obtained by ( (2006, J. Appl. Phys. , 99(8), pp. 08N104-1–08N104-3), it was suggested that the variation in the touchdown velocity is due to a variation in the intermolecular forces. Furthermore, it was suggested that the variation in the takeoff velocity is caused by a variation in the friction forces between the slider and disk surface. This occurs because the takeoff velocity was greater for a lubricant with a higher bonded ratio or a thinner lubricant, which only has a small fraction of free mobile lubricant. The results predicted by the simulations are consistent with those observed experimentally. In addition, a design guideline for next-generation HDI, with small touchdown and takeoff velocities, resulting in small slider hysteresis, is discussed in detail in this paper.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffects of Molecularly Thin Liquid Lubricant Films on Slider Hysteresis Behavior in Hard Disk Drives
    typeJournal Paper
    journal volume129
    journal issue3
    journal titleJournal of Tribology
    identifier doi10.1115/1.2736448
    journal fristpage579
    journal lastpage585
    identifier eissn1528-8897
    keywordsLubricants
    keywordsDisks
    keywordsFilm thickness
    keywordsForce AND Intermolecular forces
    treeJournal of Tribology:;2007:;volume( 129 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian