YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Air Bearing Slider-Disk Interface for Single-Sided High Speed Recording on a Metal Foil Disk

    Source: Journal of Tribology:;2007:;volume( 129 ):;issue: 003::page 562
    Author:
    James White
    DOI: 10.1115/1.2736442
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: There are disk-drive data storage applications best served by single-sided recording configurations. These include situations where (i) storage requirements can be achieved on a single side of a disk and (ii) dimensional constraints on the disk drive prohibit the presence of a recording head and its associated mounting device on each side of the disk. Even if dimensional requirements are not a concern, the most cost-effective and operationally efficient slider-disk air-bearing interface for single-sided recording is one that does not include an air-bearing slider, pressure pad, or other air-bearing structure on the nondata side of the disk. A metal foil disk offers some of the best characteristics of both the hard disk and floppy disk for digital data storage. It offers hard disk recording densities, increased shock resistance, reduced manufacturing cost, and requires less operational energy than a hard disk. However, use of a conventional recording head slider assembly without opposing air-bearing support for single-sided recording on a high-speed metal foil disk presents a fundamental problem because the air-bearing surface of the slider produces a net transverse force to the disk. This force causes the disk to deflect and can result in flying height and stability problems at the slider-disk interface. The current work describes an air-bearing interface for low flying height single-sided recording on a high-speed metal foil disk that minimizes disk deflection and instability without the presence of air-bearing components on opposing sides of the disk. The new interface utilizes a vacuum cavity-type air-bearing with little or no preload. Examples will be presented and discussed for the new interface that illustrate the flying characteristics of a picosized slider on a 1.8in. stainless steel disk with thickness of 25.4μm.
    keyword(s): Metal foil , Bearings , Disks , Force , Pressure , Deflection , Vacuum AND Cavities ,
    • Download: (992.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Air Bearing Slider-Disk Interface for Single-Sided High Speed Recording on a Metal Foil Disk

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/136899
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorJames White
    date accessioned2017-05-09T00:25:54Z
    date available2017-05-09T00:25:54Z
    date copyrightJuly, 2007
    date issued2007
    identifier issn0742-4787
    identifier otherJOTRE9-28751#562_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/136899
    description abstractThere are disk-drive data storage applications best served by single-sided recording configurations. These include situations where (i) storage requirements can be achieved on a single side of a disk and (ii) dimensional constraints on the disk drive prohibit the presence of a recording head and its associated mounting device on each side of the disk. Even if dimensional requirements are not a concern, the most cost-effective and operationally efficient slider-disk air-bearing interface for single-sided recording is one that does not include an air-bearing slider, pressure pad, or other air-bearing structure on the nondata side of the disk. A metal foil disk offers some of the best characteristics of both the hard disk and floppy disk for digital data storage. It offers hard disk recording densities, increased shock resistance, reduced manufacturing cost, and requires less operational energy than a hard disk. However, use of a conventional recording head slider assembly without opposing air-bearing support for single-sided recording on a high-speed metal foil disk presents a fundamental problem because the air-bearing surface of the slider produces a net transverse force to the disk. This force causes the disk to deflect and can result in flying height and stability problems at the slider-disk interface. The current work describes an air-bearing interface for low flying height single-sided recording on a high-speed metal foil disk that minimizes disk deflection and instability without the presence of air-bearing components on opposing sides of the disk. The new interface utilizes a vacuum cavity-type air-bearing with little or no preload. Examples will be presented and discussed for the new interface that illustrate the flying characteristics of a picosized slider on a 1.8in. stainless steel disk with thickness of 25.4μm.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAir Bearing Slider-Disk Interface for Single-Sided High Speed Recording on a Metal Foil Disk
    typeJournal Paper
    journal volume129
    journal issue3
    journal titleJournal of Tribology
    identifier doi10.1115/1.2736442
    journal fristpage562
    journal lastpage569
    identifier eissn1528-8897
    keywordsMetal foil
    keywordsBearings
    keywordsDisks
    keywordsForce
    keywordsPressure
    keywordsDeflection
    keywordsVacuum AND Cavities
    treeJournal of Tribology:;2007:;volume( 129 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian