| contributor author | He Xue | |
| contributor author | Tetsuo Shoji | |
| date accessioned | 2017-05-09T00:25:31Z | |
| date available | 2017-05-09T00:25:31Z | |
| date copyright | August, 2007 | |
| date issued | 2007 | |
| identifier issn | 0094-9930 | |
| identifier other | JPVTAS-28483#460_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/136694 | |
| description abstract | The quantitative prediction of environmentally assisted cracking (EAC) or stress corrosion cracking (SCC) is essential in order to predict service life and also the structural integrity and safety assessment of light water reactors. During the last 3 decades many of the research results obtained on the quantitative prediction of the EAC crack growth rate have been based on linear fracture mechanics. In order to investigate EAC behavior in the high strain zone of important structures in light water reactors, the approach taken in this paper is one in which quantitative calculations of the EAC crack growth rate, incorporating the SCC deformation /oxidation model and the elastic-plastic finite element method (EPFEM), are carried out. This approach can be used for the quantitative prediction of EAC crack growth rate in both the low and high strain zones of key structures in light water reactors. The crack growth behavior of sensitized type 304 stainless steel with a 1T-CT specimen in simulated boiling water reactor (BWR) environments is analyzed based on this approach. The effect of several environmental, material, and mechanical parameters on the EAC crack growth rate of nickel based alloys in high-temperature aqueous environments is also discussed. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Quantitative Prediction of EAC Crack Growth Rate of Sensitized Type 304 Stainless Steel in Boiling Water Reactor Environments Based on EPFEM | |
| type | Journal Paper | |
| journal volume | 129 | |
| journal issue | 3 | |
| journal title | Journal of Pressure Vessel Technology | |
| identifier doi | 10.1115/1.2748827 | |
| journal fristpage | 460 | |
| journal lastpage | 467 | |
| identifier eissn | 1528-8978 | |
| keywords | Fracture (Materials) | |
| keywords | Stainless steel | |
| keywords | Boiling water reactors AND Water | |
| tree | Journal of Pressure Vessel Technology:;2007:;volume( 129 ):;issue: 003 | |
| contenttype | Fulltext | |