Show simple item record

contributor authorZhenmao Chen
contributor authorLadislav Janousek
contributor authorNoritaka Yusa
contributor authorKenzo Miya
date accessioned2017-05-09T00:25:29Z
date available2017-05-09T00:25:29Z
date copyrightNovember, 2007
date issued2007
identifier issn0094-9930
identifier otherJPVTAS-28486#719_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/136669
description abstractIn this paper, a novel nondestructive strategy is proposed for distinguishing differences between a stress corrosion crack (SCC) and a fatigue crack (FC) based on signals from eddy current testing (ECT). The strategy consists of measurement procedures with a special ECT probe and crack type judgment scheme based on an index parameter that is defined as the amplitude ratio of the measured signals. An ECT probe, which can induce eddy current flowing mainly in a selected direction, is proposed and applied to detect crack signals by scanning along the crack with different probe orientations. It is clear that the ratio of the amplitudes of signals detected for parallel and perpendicular probe orientations is sensitive to the microstructure of the crack, i.e., the parameter is much bigger for a fatigue crack than that of a SCC. Therefore, whether a crack is a SCC or a FC can be recognized nondestructively by comparing the index parameter with a threshold value that can be previously determined. In order to verify the validity of the proposed strategy, many artificial SCC and FC test pieces were fabricated and ECT inspections were performed to measure the corresponding crack signals. Numerical simulations were also conducted to investigate the physical principles of the new methodology. From both the numerical and experimental results, it is demonstrated that the strategy is very promising for the distinction of artificial SCC and FC; there is also good possibility that this method can be applied to natural cracks if the threshold value can be properly determined.
publisherThe American Society of Mechanical Engineers (ASME)
titleA Nondestructive Strategy for the Distinction of Natural Fatigue and Stress Corrosion Cracks Based on Signals From Eddy Current Testing
typeJournal Paper
journal volume129
journal issue4
journal titleJournal of Pressure Vessel Technology
identifier doi10.1115/1.2767365
journal fristpage719
journal lastpage728
identifier eissn1528-8978
keywordsEddy currents (Electricity)
keywordsFracture (Materials)
keywordsProbes
keywordsSignals
keywordsEddy current testing
keywordsConductivity
keywordsStress corrosion cracking AND Fatigue
treeJournal of Pressure Vessel Technology:;2007:;volume( 129 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record