YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Designing Strength-Proportional Hydraulic Resistance for an Elbow Flexion-Extension Exercise Machine

    Source: Journal of Medical Devices:;2007:;volume( 001 ):;issue: 001::page 3
    Author:
    Brian A. Garner
    DOI: 10.1115/1.2355684
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The mechanical linkage of a hydraulic-resistance, elbow flexion and extension exercise machine was redesigned to provide a resistance response that varies in proportion to female joint strength over the range of motion. The aim was to integrate into a simple, passive exercise machine the respective benefits of hydraulic resistance and isokinetic exercise. Hydraulic resistance facilitates bidirectional, concentric-concentric exercise that naturally scales to accommodate users of varying strength. Strength-proportional resistance emulates the response of isokinetic exercise to work muscles at their maximum capacity throughout the range of motion. Methods: Independent mathematical models of elbow joint strength and machine resistance were derived as a function of machine arm flexion angle and angular velocity. The strength model was based on experimental data measured from female subjects during maximum-effort trials on the exercise machine. The resistance model was based on the force-velocity response of the hydraulic cylinder and the linkage’s mechanical advantage as determined from its geometric parameters. The intersection of these two models was assumed to represent conditions of equilibrium between strength and resistance, and was used to predict exercise operating speed for any angle of elbow flexion. Numerical optimization methods were applied to compute optimal parameters for two-bar and four-bar linkage configurations with the objective of achieving predicted operating speed patterns that were constant (isokinetic) over the range of motion. Results: A four-bar linkage configuration was found to be more effective at providing the desired resistance response than a two-bar configuration. Experimental trials using the optimized linkages confirmed model predictions and demonstrated that user operating speeds over the range of motion were closer to the desired isokinetic patterns than with the original linkage. The design method was effective at predicting user operating speeds and targeting desired shapes and magnitudes for the operating speed patterns. The method should be applicable to the design of other exercise machines that seek the advantages of a strength-proportional response derived from hydraulic resistance.
    keyword(s): Machinery , Motion , Electrical resistance , Linkages , Design , Hydraulic cylinders AND Modeling ,
    • Download: (877.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Designing Strength-Proportional Hydraulic Resistance for an Elbow Flexion-Extension Exercise Machine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/136591
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorBrian A. Garner
    date accessioned2017-05-09T00:25:19Z
    date available2017-05-09T00:25:19Z
    date copyrightMarch, 2007
    date issued2007
    identifier issn1932-6181
    identifier otherJMDOA4-27980#3_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/136591
    description abstractThe mechanical linkage of a hydraulic-resistance, elbow flexion and extension exercise machine was redesigned to provide a resistance response that varies in proportion to female joint strength over the range of motion. The aim was to integrate into a simple, passive exercise machine the respective benefits of hydraulic resistance and isokinetic exercise. Hydraulic resistance facilitates bidirectional, concentric-concentric exercise that naturally scales to accommodate users of varying strength. Strength-proportional resistance emulates the response of isokinetic exercise to work muscles at their maximum capacity throughout the range of motion. Methods: Independent mathematical models of elbow joint strength and machine resistance were derived as a function of machine arm flexion angle and angular velocity. The strength model was based on experimental data measured from female subjects during maximum-effort trials on the exercise machine. The resistance model was based on the force-velocity response of the hydraulic cylinder and the linkage’s mechanical advantage as determined from its geometric parameters. The intersection of these two models was assumed to represent conditions of equilibrium between strength and resistance, and was used to predict exercise operating speed for any angle of elbow flexion. Numerical optimization methods were applied to compute optimal parameters for two-bar and four-bar linkage configurations with the objective of achieving predicted operating speed patterns that were constant (isokinetic) over the range of motion. Results: A four-bar linkage configuration was found to be more effective at providing the desired resistance response than a two-bar configuration. Experimental trials using the optimized linkages confirmed model predictions and demonstrated that user operating speeds over the range of motion were closer to the desired isokinetic patterns than with the original linkage. The design method was effective at predicting user operating speeds and targeting desired shapes and magnitudes for the operating speed patterns. The method should be applicable to the design of other exercise machines that seek the advantages of a strength-proportional response derived from hydraulic resistance.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesigning Strength-Proportional Hydraulic Resistance for an Elbow Flexion-Extension Exercise Machine
    typeJournal Paper
    journal volume1
    journal issue1
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.2355684
    journal fristpage3
    journal lastpage13
    identifier eissn1932-619X
    keywordsMachinery
    keywordsMotion
    keywordsElectrical resistance
    keywordsLinkages
    keywordsDesign
    keywordsHydraulic cylinders AND Modeling
    treeJournal of Medical Devices:;2007:;volume( 001 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian