YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flexible Prosthetic Vein Valve

    Source: Journal of Medical Devices:;2007:;volume( 001 ):;issue: 002::page 105
    Author:
    Rahul D. Sathe
    ,
    David N. Ku
    DOI: 10.1115/1.2736393
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Over 7 million Americans suffer from chronic venous insufficiency (CVI), a disease that affects the venous system of the lower extremities. Problems associated with CVI include ulcerations, bleeding, swelling, and varicose veins, as well as deep vein thrombosis and pulmonary embolism. The presence of CVI is the result of incompetent, or malfunctioning, one-way vein valves in leg veins. There are few effective clinical therapies for treating CVI and there are currently no prosthetic vein valves commercially available. The purpose of this study was to define clinically relevant design requirements, develop functional tests for assessing a prosthetic vein valve, and design and fabricate a functional prosthetic vein valve for eventual clinical use. Engineering design methods were used to develop the valve, building a product based on well-defined consumer needs and design specifications. Emphasis was placed on creating a valve with potential clinical functionality. This clinical functionality was distilled into three major design criteria: that the valve (1) withstand backpressure of 300mmHg with less than 1.0mL∕min of leakage; (2) open with distal pressure gradients less than 5mmHg; and (3) meet criteria 1 and 2 after 500,000cycles of opening and closing. Hydrostatic testing was conducted to measure the opening pressure and reflux leak rate of the valve. Cyclic life functionality was assessed using a cyclic flow loop simulating physiologic conditions of cyclic flow and pressure found in leg veins. The valve opened with a pressure of 2.6mmHg±0.7mmHg, which matches physiologic vein valve function. The valve also withstood 300mmHg of backpressure with less than 0.5mL∕min of leakage, and maintained this performance even after 508,000cycles of opening and closing in simulated physiologic conditions. The valve’s burst pressure was a minimum of 530mmHg±10mmHg, six times greater than physiologic pressure natural vein valves experience. The valve continued to function well in an environment of vein-like tube expansion. The newly designed bi-leaflet prosthetic valve is comprised of a flexible, biocompatible material. Bench test results have shown that the valve is hydrodynamically functional and meets the mechanical design criteria for backpressure competency and opening pressure after 500,000cycles. Finally, the valve can be manufactured easily with low cost.
    keyword(s): Pressure , Valves , Leakage , Artificial limbs , Testing AND Design ,
    • Download: (426.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flexible Prosthetic Vein Valve

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/136579
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorRahul D. Sathe
    contributor authorDavid N. Ku
    date accessioned2017-05-09T00:25:17Z
    date available2017-05-09T00:25:17Z
    date copyrightJune, 2007
    date issued2007
    identifier issn1932-6181
    identifier otherJMDOA4-27984#105_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/136579
    description abstractOver 7 million Americans suffer from chronic venous insufficiency (CVI), a disease that affects the venous system of the lower extremities. Problems associated with CVI include ulcerations, bleeding, swelling, and varicose veins, as well as deep vein thrombosis and pulmonary embolism. The presence of CVI is the result of incompetent, or malfunctioning, one-way vein valves in leg veins. There are few effective clinical therapies for treating CVI and there are currently no prosthetic vein valves commercially available. The purpose of this study was to define clinically relevant design requirements, develop functional tests for assessing a prosthetic vein valve, and design and fabricate a functional prosthetic vein valve for eventual clinical use. Engineering design methods were used to develop the valve, building a product based on well-defined consumer needs and design specifications. Emphasis was placed on creating a valve with potential clinical functionality. This clinical functionality was distilled into three major design criteria: that the valve (1) withstand backpressure of 300mmHg with less than 1.0mL∕min of leakage; (2) open with distal pressure gradients less than 5mmHg; and (3) meet criteria 1 and 2 after 500,000cycles of opening and closing. Hydrostatic testing was conducted to measure the opening pressure and reflux leak rate of the valve. Cyclic life functionality was assessed using a cyclic flow loop simulating physiologic conditions of cyclic flow and pressure found in leg veins. The valve opened with a pressure of 2.6mmHg±0.7mmHg, which matches physiologic vein valve function. The valve also withstood 300mmHg of backpressure with less than 0.5mL∕min of leakage, and maintained this performance even after 508,000cycles of opening and closing in simulated physiologic conditions. The valve’s burst pressure was a minimum of 530mmHg±10mmHg, six times greater than physiologic pressure natural vein valves experience. The valve continued to function well in an environment of vein-like tube expansion. The newly designed bi-leaflet prosthetic valve is comprised of a flexible, biocompatible material. Bench test results have shown that the valve is hydrodynamically functional and meets the mechanical design criteria for backpressure competency and opening pressure after 500,000cycles. Finally, the valve can be manufactured easily with low cost.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFlexible Prosthetic Vein Valve
    typeJournal Paper
    journal volume1
    journal issue2
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.2736393
    journal fristpage105
    journal lastpage112
    identifier eissn1932-619X
    keywordsPressure
    keywordsValves
    keywordsLeakage
    keywordsArtificial limbs
    keywordsTesting AND Design
    treeJournal of Medical Devices:;2007:;volume( 001 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian